How a variable’s partial correlation with other variable(s) can make a good predictor: the suppressor variable case

Suppression effect is one of the most elusive and difficult to understand dynamics in multiple regression analysis. Suppressor variable(s) and their dynamics in multiple regression analyses are important in reporting accurate research outcomes. However, quite a number of researchers are unfamiliar w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced statistics and probability 2015-11, Vol.3 (2), p.210-214
Hauptverfasser: Olusegun, Akinwande Michael, Muktar, Aminu, Kabir, Kaile Nasiru, Adamu, Ibrahim Abubakar, Abubakar, Umar Adamu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 214
container_issue 2
container_start_page 210
container_title International journal of advanced statistics and probability
container_volume 3
creator Olusegun, Akinwande Michael
Muktar, Aminu
Kabir, Kaile Nasiru
Adamu, Ibrahim Abubakar
Abubakar, Umar Adamu
description Suppression effect is one of the most elusive and difficult to understand dynamics in multiple regression analysis. Suppressor variable(s) and their dynamics in multiple regression analyses are important in reporting accurate research outcomes. However, quite a number of researchers are unfamiliar with the possible advantages and importance of these variables. Suppressor variables tend to appear useless as separate predictors, but have the potential to change the predictive ability of other variables and completely influence research outcomes. This research describes the role suppressor variables play in a multiple regression analysis and provides practical examples that further explain how suppressor effects can alter research outcomes. Finally, we employed mathematical set notation to demonstrate the concepts of suppressor effects.
doi_str_mv 10.14419/ijasp.v3i2.5400
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_14419_ijasp_v3i2_5400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_14419_ijasp_v3i2_5400</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1300-6569792cabca331e548ff08b4ea0354029bf43cb8b8c88cdd64fa8877e33fa553</originalsourceid><addsrcrecordid>eNpNkLFOwzAQhi0EElXpzugRhpRz7CQOG6qAIlVigTm6ODZ1SevIDq1grHiSzrwFb9InIS0ImO50-r9fuo-QUwZDJgTLL-wMQzNcchsPEwFwQHoxhyzKQSSH__ZjMghhBgCMC5bmeY-8jd2KIl2it1jW-nOzXX9s3zeBNuhbizVVzntdY2vdgq5sO6WunWr_C5yFc6pwQef4rLueJ-cq2nhdWdU6f0m7LA0vTXcJwf1RHRL0CTkyWAc9-Jl98nhz_TAaR5P727vR1SRSjANEaZLmWR4rLBVyznQipDEgS6ERePdsnJdGcFXKUiopVVWlwqCUWaY5N5gkvE_gu1d5F4LXpmi8naN_LRgUe33FXl-x01fs9PEvZtppcA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>How a variable’s partial correlation with other variable(s) can make a good predictor: the suppressor variable case</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Olusegun, Akinwande Michael ; Muktar, Aminu ; Kabir, Kaile Nasiru ; Adamu, Ibrahim Abubakar ; Abubakar, Umar Adamu</creator><creatorcontrib>Olusegun, Akinwande Michael ; Muktar, Aminu ; Kabir, Kaile Nasiru ; Adamu, Ibrahim Abubakar ; Abubakar, Umar Adamu</creatorcontrib><description>Suppression effect is one of the most elusive and difficult to understand dynamics in multiple regression analysis. Suppressor variable(s) and their dynamics in multiple regression analyses are important in reporting accurate research outcomes. However, quite a number of researchers are unfamiliar with the possible advantages and importance of these variables. Suppressor variables tend to appear useless as separate predictors, but have the potential to change the predictive ability of other variables and completely influence research outcomes. This research describes the role suppressor variables play in a multiple regression analysis and provides practical examples that further explain how suppressor effects can alter research outcomes. Finally, we employed mathematical set notation to demonstrate the concepts of suppressor effects.</description><identifier>ISSN: 2307-9045</identifier><identifier>EISSN: 2307-9045</identifier><identifier>DOI: 10.14419/ijasp.v3i2.5400</identifier><language>eng</language><ispartof>International journal of advanced statistics and probability, 2015-11, Vol.3 (2), p.210-214</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1300-6569792cabca331e548ff08b4ea0354029bf43cb8b8c88cdd64fa8877e33fa553</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Olusegun, Akinwande Michael</creatorcontrib><creatorcontrib>Muktar, Aminu</creatorcontrib><creatorcontrib>Kabir, Kaile Nasiru</creatorcontrib><creatorcontrib>Adamu, Ibrahim Abubakar</creatorcontrib><creatorcontrib>Abubakar, Umar Adamu</creatorcontrib><title>How a variable’s partial correlation with other variable(s) can make a good predictor: the suppressor variable case</title><title>International journal of advanced statistics and probability</title><description>Suppression effect is one of the most elusive and difficult to understand dynamics in multiple regression analysis. Suppressor variable(s) and their dynamics in multiple regression analyses are important in reporting accurate research outcomes. However, quite a number of researchers are unfamiliar with the possible advantages and importance of these variables. Suppressor variables tend to appear useless as separate predictors, but have the potential to change the predictive ability of other variables and completely influence research outcomes. This research describes the role suppressor variables play in a multiple regression analysis and provides practical examples that further explain how suppressor effects can alter research outcomes. Finally, we employed mathematical set notation to demonstrate the concepts of suppressor effects.</description><issn>2307-9045</issn><issn>2307-9045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpNkLFOwzAQhi0EElXpzugRhpRz7CQOG6qAIlVigTm6ODZ1SevIDq1grHiSzrwFb9InIS0ImO50-r9fuo-QUwZDJgTLL-wMQzNcchsPEwFwQHoxhyzKQSSH__ZjMghhBgCMC5bmeY-8jd2KIl2it1jW-nOzXX9s3zeBNuhbizVVzntdY2vdgq5sO6WunWr_C5yFc6pwQef4rLueJ-cq2nhdWdU6f0m7LA0vTXcJwf1RHRL0CTkyWAc9-Jl98nhz_TAaR5P727vR1SRSjANEaZLmWR4rLBVyznQipDEgS6ERePdsnJdGcFXKUiopVVWlwqCUWaY5N5gkvE_gu1d5F4LXpmi8naN_LRgUe33FXl-x01fs9PEvZtppcA</recordid><startdate>20151105</startdate><enddate>20151105</enddate><creator>Olusegun, Akinwande Michael</creator><creator>Muktar, Aminu</creator><creator>Kabir, Kaile Nasiru</creator><creator>Adamu, Ibrahim Abubakar</creator><creator>Abubakar, Umar Adamu</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20151105</creationdate><title>How a variable’s partial correlation with other variable(s) can make a good predictor: the suppressor variable case</title><author>Olusegun, Akinwande Michael ; Muktar, Aminu ; Kabir, Kaile Nasiru ; Adamu, Ibrahim Abubakar ; Abubakar, Umar Adamu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1300-6569792cabca331e548ff08b4ea0354029bf43cb8b8c88cdd64fa8877e33fa553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Olusegun, Akinwande Michael</creatorcontrib><creatorcontrib>Muktar, Aminu</creatorcontrib><creatorcontrib>Kabir, Kaile Nasiru</creatorcontrib><creatorcontrib>Adamu, Ibrahim Abubakar</creatorcontrib><creatorcontrib>Abubakar, Umar Adamu</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of advanced statistics and probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olusegun, Akinwande Michael</au><au>Muktar, Aminu</au><au>Kabir, Kaile Nasiru</au><au>Adamu, Ibrahim Abubakar</au><au>Abubakar, Umar Adamu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How a variable’s partial correlation with other variable(s) can make a good predictor: the suppressor variable case</atitle><jtitle>International journal of advanced statistics and probability</jtitle><date>2015-11-05</date><risdate>2015</risdate><volume>3</volume><issue>2</issue><spage>210</spage><epage>214</epage><pages>210-214</pages><issn>2307-9045</issn><eissn>2307-9045</eissn><abstract>Suppression effect is one of the most elusive and difficult to understand dynamics in multiple regression analysis. Suppressor variable(s) and their dynamics in multiple regression analyses are important in reporting accurate research outcomes. However, quite a number of researchers are unfamiliar with the possible advantages and importance of these variables. Suppressor variables tend to appear useless as separate predictors, but have the potential to change the predictive ability of other variables and completely influence research outcomes. This research describes the role suppressor variables play in a multiple regression analysis and provides practical examples that further explain how suppressor effects can alter research outcomes. Finally, we employed mathematical set notation to demonstrate the concepts of suppressor effects.</abstract><doi>10.14419/ijasp.v3i2.5400</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2307-9045
ispartof International journal of advanced statistics and probability, 2015-11, Vol.3 (2), p.210-214
issn 2307-9045
2307-9045
language eng
recordid cdi_crossref_primary_10_14419_ijasp_v3i2_5400
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title How a variable’s partial correlation with other variable(s) can make a good predictor: the suppressor variable case
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A54%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20a%20variable%C3%A2%E2%82%AC%E2%84%A2s%20partial%20correlation%20with%20other%20variable(s)%20can%20make%20a%20good%20predictor:%20the%20suppressor%20variable%20case&rft.jtitle=International%20journal%20of%20advanced%20statistics%20and%20probability&rft.au=Olusegun,%20Akinwande%20Michael&rft.date=2015-11-05&rft.volume=3&rft.issue=2&rft.spage=210&rft.epage=214&rft.pages=210-214&rft.issn=2307-9045&rft.eissn=2307-9045&rft_id=info:doi/10.14419/ijasp.v3i2.5400&rft_dat=%3Ccrossref%3E10_14419_ijasp_v3i2_5400%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true