Quantitative Analysis of Residual Hydrogen on Platinum Surface by Atom Probe
The paper reports results of a systematic investigation of electric field effects on residual H signals in atom probe analysis. Three species, H+, H2+, and H3+, can be detected on a Pt surface without gas introduction into the ultra-high vacuum chamber. The H+ ions are more likely to be detected at...
Gespeichert in:
Veröffentlicht in: | E-journal of surface science and nanotechnology 2020/04/09, Vol.18, pp.127-132 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 132 |
---|---|
container_issue | |
container_start_page | 127 |
container_title | E-journal of surface science and nanotechnology |
container_volume | 18 |
creator | Chen, Sunwei Murakami, Ryo Araki, Koya Owari, Masanori |
description | The paper reports results of a systematic investigation of electric field effects on residual H signals in atom probe analysis. Three species, H+, H2+, and H3+, can be detected on a Pt surface without gas introduction into the ultra-high vacuum chamber. The H+ ions are more likely to be detected at a higher electric field. On the other hand, the H2+ and H3+ ions appear at the lower electric field. A comparison of residual H and a D2 gas confirmed that residual H is in the H2 gas form. H2 can be dissociated to H on the Pt surface. Consequently, H, H2, and H3 coexist on the Pt surface and desorb at an appropriate electric field. |
doi_str_mv | 10.1380/ejssnt.2020.127 |
format | Article |
fullrecord | <record><control><sourceid>jstage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1380_ejssnt_2020_127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>article_ejssnt_18_0_18_127_article_char_en</sourcerecordid><originalsourceid>FETCH-LOGICAL-c506t-c01d379b16e81b0986f06fa6408526911511774eccbf8cb10bb9e2a45d8e07053</originalsourceid><addsrcrecordid>eNpNkE1PwzAMhiMEEmNw5po_0M1p2ia9MU3AkCYxvs5RkjqjU9eiJEXqv6fTYOJiW_bz-vAQcstgxriEOe5CaOMshXRcpOKMTBjPZAK8ZOf_5ktyFcIOgAsuiglZv_S6jXXUsf5Gumh1M4Q60M7RVwx11euGrobKd1tsadfSTTOCbb-nb7132iI1A13Ebk83vjN4TS6cbgLe_PYp-Xi4f1-ukvXz49NysU5sDkVMLLCKi9KwAiUzUMrCQeF0kYHM06JkLGdMiAytNU5aw8CYElOd5ZVEEJDzKZkf_1rfheDRqS9f77UfFAN1kKGOMtRBhhpljIm7Y2IXot7iidc-1rbBP55JBYcyRk4n-6m9wpb_AL7-a4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantitative Analysis of Residual Hydrogen on Platinum Surface by Atom Probe</title><source>J-STAGE Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Chen, Sunwei ; Murakami, Ryo ; Araki, Koya ; Owari, Masanori</creator><creatorcontrib>Chen, Sunwei ; Murakami, Ryo ; Araki, Koya ; Owari, Masanori</creatorcontrib><description>The paper reports results of a systematic investigation of electric field effects on residual H signals in atom probe analysis. Three species, H+, H2+, and H3+, can be detected on a Pt surface without gas introduction into the ultra-high vacuum chamber. The H+ ions are more likely to be detected at a higher electric field. On the other hand, the H2+ and H3+ ions appear at the lower electric field. A comparison of residual H and a D2 gas confirmed that residual H is in the H2 gas form. H2 can be dissociated to H on the Pt surface. Consequently, H, H2, and H3 coexist on the Pt surface and desorb at an appropriate electric field.</description><identifier>ISSN: 1348-0391</identifier><identifier>EISSN: 1348-0391</identifier><identifier>DOI: 10.1380/ejssnt.2020.127</identifier><language>eng</language><publisher>The Japan Society of Vacuum and Surface Science</publisher><subject>Adsorption ; Atom probe ; Dissociation ; Electric field ; Residual hydrogen</subject><ispartof>e-Journal of Surface Science and Nanotechnology, 2020/04/09, Vol.18, pp.127-132</ispartof><rights>2020 The Japan Society of Vacuum and Surface Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c506t-c01d379b16e81b0986f06fa6408526911511774eccbf8cb10bb9e2a45d8e07053</citedby><cites>FETCH-LOGICAL-c506t-c01d379b16e81b0986f06fa6408526911511774eccbf8cb10bb9e2a45d8e07053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,1877,27901,27902</link.rule.ids></links><search><creatorcontrib>Chen, Sunwei</creatorcontrib><creatorcontrib>Murakami, Ryo</creatorcontrib><creatorcontrib>Araki, Koya</creatorcontrib><creatorcontrib>Owari, Masanori</creatorcontrib><title>Quantitative Analysis of Residual Hydrogen on Platinum Surface by Atom Probe</title><title>E-journal of surface science and nanotechnology</title><addtitle>e-J. Surf. Sci. Nanotechnol.</addtitle><description>The paper reports results of a systematic investigation of electric field effects on residual H signals in atom probe analysis. Three species, H+, H2+, and H3+, can be detected on a Pt surface without gas introduction into the ultra-high vacuum chamber. The H+ ions are more likely to be detected at a higher electric field. On the other hand, the H2+ and H3+ ions appear at the lower electric field. A comparison of residual H and a D2 gas confirmed that residual H is in the H2 gas form. H2 can be dissociated to H on the Pt surface. Consequently, H, H2, and H3 coexist on the Pt surface and desorb at an appropriate electric field.</description><subject>Adsorption</subject><subject>Atom probe</subject><subject>Dissociation</subject><subject>Electric field</subject><subject>Residual hydrogen</subject><issn>1348-0391</issn><issn>1348-0391</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNkE1PwzAMhiMEEmNw5po_0M1p2ia9MU3AkCYxvs5RkjqjU9eiJEXqv6fTYOJiW_bz-vAQcstgxriEOe5CaOMshXRcpOKMTBjPZAK8ZOf_5ktyFcIOgAsuiglZv_S6jXXUsf5Gumh1M4Q60M7RVwx11euGrobKd1tsadfSTTOCbb-nb7132iI1A13Ebk83vjN4TS6cbgLe_PYp-Xi4f1-ukvXz49NysU5sDkVMLLCKi9KwAiUzUMrCQeF0kYHM06JkLGdMiAytNU5aw8CYElOd5ZVEEJDzKZkf_1rfheDRqS9f77UfFAN1kKGOMtRBhhpljIm7Y2IXot7iidc-1rbBP55JBYcyRk4n-6m9wpb_AL7-a4A</recordid><startdate>20200409</startdate><enddate>20200409</enddate><creator>Chen, Sunwei</creator><creator>Murakami, Ryo</creator><creator>Araki, Koya</creator><creator>Owari, Masanori</creator><general>The Japan Society of Vacuum and Surface Science</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200409</creationdate><title>Quantitative Analysis of Residual Hydrogen on Platinum Surface by Atom Probe</title><author>Chen, Sunwei ; Murakami, Ryo ; Araki, Koya ; Owari, Masanori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c506t-c01d379b16e81b0986f06fa6408526911511774eccbf8cb10bb9e2a45d8e07053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adsorption</topic><topic>Atom probe</topic><topic>Dissociation</topic><topic>Electric field</topic><topic>Residual hydrogen</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Sunwei</creatorcontrib><creatorcontrib>Murakami, Ryo</creatorcontrib><creatorcontrib>Araki, Koya</creatorcontrib><creatorcontrib>Owari, Masanori</creatorcontrib><collection>CrossRef</collection><jtitle>E-journal of surface science and nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Sunwei</au><au>Murakami, Ryo</au><au>Araki, Koya</au><au>Owari, Masanori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative Analysis of Residual Hydrogen on Platinum Surface by Atom Probe</atitle><jtitle>E-journal of surface science and nanotechnology</jtitle><addtitle>e-J. Surf. Sci. Nanotechnol.</addtitle><date>2020-04-09</date><risdate>2020</risdate><volume>18</volume><spage>127</spage><epage>132</epage><pages>127-132</pages><issn>1348-0391</issn><eissn>1348-0391</eissn><abstract>The paper reports results of a systematic investigation of electric field effects on residual H signals in atom probe analysis. Three species, H+, H2+, and H3+, can be detected on a Pt surface without gas introduction into the ultra-high vacuum chamber. The H+ ions are more likely to be detected at a higher electric field. On the other hand, the H2+ and H3+ ions appear at the lower electric field. A comparison of residual H and a D2 gas confirmed that residual H is in the H2 gas form. H2 can be dissociated to H on the Pt surface. Consequently, H, H2, and H3 coexist on the Pt surface and desorb at an appropriate electric field.</abstract><pub>The Japan Society of Vacuum and Surface Science</pub><doi>10.1380/ejssnt.2020.127</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1348-0391 |
ispartof | e-Journal of Surface Science and Nanotechnology, 2020/04/09, Vol.18, pp.127-132 |
issn | 1348-0391 1348-0391 |
language | eng |
recordid | cdi_crossref_primary_10_1380_ejssnt_2020_127 |
source | J-STAGE Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry |
subjects | Adsorption Atom probe Dissociation Electric field Residual hydrogen |
title | Quantitative Analysis of Residual Hydrogen on Platinum Surface by Atom Probe |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A58%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20Analysis%20of%20Residual%20Hydrogen%20on%20Platinum%20Surface%20by%20Atom%20Probe&rft.jtitle=E-journal%20of%20surface%20science%20and%20nanotechnology&rft.au=Chen,%20Sunwei&rft.date=2020-04-09&rft.volume=18&rft.spage=127&rft.epage=132&rft.pages=127-132&rft.issn=1348-0391&rft.eissn=1348-0391&rft_id=info:doi/10.1380/ejssnt.2020.127&rft_dat=%3Cjstage_cross%3Earticle_ejssnt_18_0_18_127_article_char_en%3C/jstage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |