Direct Comparison of Near-Infrared Absorbance Spectroscopy with Raman Scattering Spectroscopy for the Quantitative Analysis of Xylene Isomer Mixtures

In order to overcome instrument problems associated with moving parts, such as optical misalignment and/or mechanical breakdown, we have developed two solid-state (no moving parts) spectrometers suitable for many industrial process monitoring applications. The first instrument utilizes near-infrared...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied spectroscopy 1999-10, Vol.53 (10), p.1177-1182
Hauptverfasser: Gresham, Christopher A., Gilmore, Daniel A., Denton, M. Bonner
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1182
container_issue 10
container_start_page 1177
container_title Applied spectroscopy
container_volume 53
creator Gresham, Christopher A.
Gilmore, Daniel A.
Denton, M. Bonner
description In order to overcome instrument problems associated with moving parts, such as optical misalignment and/or mechanical breakdown, we have developed two solid-state (no moving parts) spectrometers suitable for many industrial process monitoring applications. The first instrument utilizes near-infrared absorbance spectroscopy with a 1024-element platinum-silicide linear photodiode array detector, and the other employs Raman scattering spectroscopy with a 1024 × 1024 element charge-coupled device (CCD) detector. In order to demonstrate the utility of solid-state instrumentation for industrial process monitoring analysis, both instruments were used for the simultaneous quantitative analysis of individual components of xylene isomer mixtures. The xylene isomer mixture samples prepared for this study contained approximately 75–86, 0.6–5, and 0.1–14% w/v ortho-, meta-, and para-xylene, respectively, to reflect compositions of xylene raw materials used by specialty chemical manufacturers. Each spectroscopic system provides a means for fast (seconds), nondestructive data acquisition with no sample preparation. With the use of the chemometric data treatment of partial least-squares (PLS) regression, the absolute accuracies at 95% confidence for each isomer were found to be ±0.05, ±0.12, and ±0.09% w/v with near-infrared spectroscopy and ±0.08, ±0.04, and ±0.07% w/v with Raman spectroscopy for ortho-, meta-, and para-xylene, respectively.
doi_str_mv 10.1366/0003702991945632
format Article
fullrecord <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1366_0003702991945632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1366_0003702991945632</sage_id><sourcerecordid>10.1366_0003702991945632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-f674c6776af6f69e92d170f5634f4d8697643313f6e7bfe4a282dc022eff68af3</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIlMKdo38g4NiJHR-r8qpUQFCQuEWus25dNXZlu0A-hP8lVbmAxGl3NTO7O4PQeU4ucsb5JSGECUKlzGVRckYP0KDvWMZKRg7RYAdnPV4do5MYV_1YSlYO0NeVDaATHvt2o4KN3mFv8AOokE2cCSpAg0fz6MNcOQ14tunJwUftNx3-sGmJn1WrHJ5plRIE6xa_KcYHnJaAn7bKJZtUsu-AR06tu2jj7tJbtwYHeBJ9CwHf28-0DRBP0ZFR6whnP3WIXm-uX8Z32fTxdjIeTTNNhUyZ4aLQXAiuDDdcgqRNLojp7RemaCouBS8Yy5nhIOYGCkUr2mhCKRjDK2XYEJH9Xt0_HAOYehNsq0JX56TexVr_jbWXZHtJVAuoV34bejfxf_43XhB66A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Direct Comparison of Near-Infrared Absorbance Spectroscopy with Raman Scattering Spectroscopy for the Quantitative Analysis of Xylene Isomer Mixtures</title><source>Access via SAGE</source><creator>Gresham, Christopher A. ; Gilmore, Daniel A. ; Denton, M. Bonner</creator><creatorcontrib>Gresham, Christopher A. ; Gilmore, Daniel A. ; Denton, M. Bonner</creatorcontrib><description>In order to overcome instrument problems associated with moving parts, such as optical misalignment and/or mechanical breakdown, we have developed two solid-state (no moving parts) spectrometers suitable for many industrial process monitoring applications. The first instrument utilizes near-infrared absorbance spectroscopy with a 1024-element platinum-silicide linear photodiode array detector, and the other employs Raman scattering spectroscopy with a 1024 × 1024 element charge-coupled device (CCD) detector. In order to demonstrate the utility of solid-state instrumentation for industrial process monitoring analysis, both instruments were used for the simultaneous quantitative analysis of individual components of xylene isomer mixtures. The xylene isomer mixture samples prepared for this study contained approximately 75–86, 0.6–5, and 0.1–14% w/v ortho-, meta-, and para-xylene, respectively, to reflect compositions of xylene raw materials used by specialty chemical manufacturers. Each spectroscopic system provides a means for fast (seconds), nondestructive data acquisition with no sample preparation. With the use of the chemometric data treatment of partial least-squares (PLS) regression, the absolute accuracies at 95% confidence for each isomer were found to be ±0.05, ±0.12, and ±0.09% w/v with near-infrared spectroscopy and ±0.08, ±0.04, and ±0.07% w/v with Raman spectroscopy for ortho-, meta-, and para-xylene, respectively.</description><identifier>ISSN: 0003-7028</identifier><identifier>EISSN: 1943-3530</identifier><identifier>DOI: 10.1366/0003702991945632</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>Applied spectroscopy, 1999-10, Vol.53 (10), p.1177-1182</ispartof><rights>1999 Society for Applied Spectroscopy</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c279t-f674c6776af6f69e92d170f5634f4d8697643313f6e7bfe4a282dc022eff68af3</citedby><cites>FETCH-LOGICAL-c279t-f674c6776af6f69e92d170f5634f4d8697643313f6e7bfe4a282dc022eff68af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1366/0003702991945632$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1366/0003702991945632$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>315,781,785,21823,27928,27929,43625,43626</link.rule.ids></links><search><creatorcontrib>Gresham, Christopher A.</creatorcontrib><creatorcontrib>Gilmore, Daniel A.</creatorcontrib><creatorcontrib>Denton, M. Bonner</creatorcontrib><title>Direct Comparison of Near-Infrared Absorbance Spectroscopy with Raman Scattering Spectroscopy for the Quantitative Analysis of Xylene Isomer Mixtures</title><title>Applied spectroscopy</title><description>In order to overcome instrument problems associated with moving parts, such as optical misalignment and/or mechanical breakdown, we have developed two solid-state (no moving parts) spectrometers suitable for many industrial process monitoring applications. The first instrument utilizes near-infrared absorbance spectroscopy with a 1024-element platinum-silicide linear photodiode array detector, and the other employs Raman scattering spectroscopy with a 1024 × 1024 element charge-coupled device (CCD) detector. In order to demonstrate the utility of solid-state instrumentation for industrial process monitoring analysis, both instruments were used for the simultaneous quantitative analysis of individual components of xylene isomer mixtures. The xylene isomer mixture samples prepared for this study contained approximately 75–86, 0.6–5, and 0.1–14% w/v ortho-, meta-, and para-xylene, respectively, to reflect compositions of xylene raw materials used by specialty chemical manufacturers. Each spectroscopic system provides a means for fast (seconds), nondestructive data acquisition with no sample preparation. With the use of the chemometric data treatment of partial least-squares (PLS) regression, the absolute accuracies at 95% confidence for each isomer were found to be ±0.05, ±0.12, and ±0.09% w/v with near-infrared spectroscopy and ±0.08, ±0.04, and ±0.07% w/v with Raman spectroscopy for ortho-, meta-, and para-xylene, respectively.</description><issn>0003-7028</issn><issn>1943-3530</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNp1UMtOwzAQtBBIlMKdo38g4NiJHR-r8qpUQFCQuEWus25dNXZlu0A-hP8lVbmAxGl3NTO7O4PQeU4ucsb5JSGECUKlzGVRckYP0KDvWMZKRg7RYAdnPV4do5MYV_1YSlYO0NeVDaATHvt2o4KN3mFv8AOokE2cCSpAg0fz6MNcOQ14tunJwUftNx3-sGmJn1WrHJ5plRIE6xa_KcYHnJaAn7bKJZtUsu-AR06tu2jj7tJbtwYHeBJ9CwHf28-0DRBP0ZFR6whnP3WIXm-uX8Z32fTxdjIeTTNNhUyZ4aLQXAiuDDdcgqRNLojp7RemaCouBS8Yy5nhIOYGCkUr2mhCKRjDK2XYEJH9Xt0_HAOYehNsq0JX56TexVr_jbWXZHtJVAuoV34bejfxf_43XhB66A</recordid><startdate>19991001</startdate><enddate>19991001</enddate><creator>Gresham, Christopher A.</creator><creator>Gilmore, Daniel A.</creator><creator>Denton, M. Bonner</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19991001</creationdate><title>Direct Comparison of Near-Infrared Absorbance Spectroscopy with Raman Scattering Spectroscopy for the Quantitative Analysis of Xylene Isomer Mixtures</title><author>Gresham, Christopher A. ; Gilmore, Daniel A. ; Denton, M. Bonner</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-f674c6776af6f69e92d170f5634f4d8697643313f6e7bfe4a282dc022eff68af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gresham, Christopher A.</creatorcontrib><creatorcontrib>Gilmore, Daniel A.</creatorcontrib><creatorcontrib>Denton, M. Bonner</creatorcontrib><collection>CrossRef</collection><jtitle>Applied spectroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gresham, Christopher A.</au><au>Gilmore, Daniel A.</au><au>Denton, M. Bonner</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Comparison of Near-Infrared Absorbance Spectroscopy with Raman Scattering Spectroscopy for the Quantitative Analysis of Xylene Isomer Mixtures</atitle><jtitle>Applied spectroscopy</jtitle><date>1999-10-01</date><risdate>1999</risdate><volume>53</volume><issue>10</issue><spage>1177</spage><epage>1182</epage><pages>1177-1182</pages><issn>0003-7028</issn><eissn>1943-3530</eissn><abstract>In order to overcome instrument problems associated with moving parts, such as optical misalignment and/or mechanical breakdown, we have developed two solid-state (no moving parts) spectrometers suitable for many industrial process monitoring applications. The first instrument utilizes near-infrared absorbance spectroscopy with a 1024-element platinum-silicide linear photodiode array detector, and the other employs Raman scattering spectroscopy with a 1024 × 1024 element charge-coupled device (CCD) detector. In order to demonstrate the utility of solid-state instrumentation for industrial process monitoring analysis, both instruments were used for the simultaneous quantitative analysis of individual components of xylene isomer mixtures. The xylene isomer mixture samples prepared for this study contained approximately 75–86, 0.6–5, and 0.1–14% w/v ortho-, meta-, and para-xylene, respectively, to reflect compositions of xylene raw materials used by specialty chemical manufacturers. Each spectroscopic system provides a means for fast (seconds), nondestructive data acquisition with no sample preparation. With the use of the chemometric data treatment of partial least-squares (PLS) regression, the absolute accuracies at 95% confidence for each isomer were found to be ±0.05, ±0.12, and ±0.09% w/v with near-infrared spectroscopy and ±0.08, ±0.04, and ±0.07% w/v with Raman spectroscopy for ortho-, meta-, and para-xylene, respectively.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1366/0003702991945632</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-7028
ispartof Applied spectroscopy, 1999-10, Vol.53 (10), p.1177-1182
issn 0003-7028
1943-3530
language eng
recordid cdi_crossref_primary_10_1366_0003702991945632
source Access via SAGE
title Direct Comparison of Near-Infrared Absorbance Spectroscopy with Raman Scattering Spectroscopy for the Quantitative Analysis of Xylene Isomer Mixtures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T09%3A29%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Comparison%20of%20Near-Infrared%20Absorbance%20Spectroscopy%20with%20Raman%20Scattering%20Spectroscopy%20for%20the%20Quantitative%20Analysis%20of%20Xylene%20Isomer%20Mixtures&rft.jtitle=Applied%20spectroscopy&rft.au=Gresham,%20Christopher%20A.&rft.date=1999-10-01&rft.volume=53&rft.issue=10&rft.spage=1177&rft.epage=1182&rft.pages=1177-1182&rft.issn=0003-7028&rft.eissn=1943-3530&rft_id=info:doi/10.1366/0003702991945632&rft_dat=%3Csage_cross%3E10.1366_0003702991945632%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1366_0003702991945632&rfr_iscdi=true