In situ Infrared Technique for Studying Adsorption onto Particulate Silica Surfaces from Aqueous Solutions

An in situ infrared technique is described which allows the detection of adsorbed surface species on metal oxide particles in an aqueous environment. The technique involves first formulating a “coating” comprised of high-surface-area silica particles and a polymeric binder in a suitable solvent. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied spectroscopy 2001-06, Vol.55 (6), p.655-662
Hauptverfasser: Ninness, Brian J., Bousfield, Doug W., Tripp, Carl P.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 662
container_issue 6
container_start_page 655
container_title Applied spectroscopy
container_volume 55
creator Ninness, Brian J.
Bousfield, Doug W.
Tripp, Carl P.
description An in situ infrared technique is described which allows the detection of adsorbed surface species on metal oxide particles in an aqueous environment. The technique involves first formulating a “coating” comprised of high-surface-area silica particles and a polymeric binder in a suitable solvent. The resulting coating is applied to the surface of an internal reflection element and mounted in a flow-through attenuated total reflection (ATR) apparatus. The technique is demonstrated with a ZnSe element coated with fumed silica particles in a polyethylene (PE) matrix. Access of the silica surface in the matrix to adsorbates was evaluated by comparing the gas-phase reaction of silanes on silica/PE-coated CsI windows in transmission with silica/PE-coated ZnSe in an ATR evacuable cell. It is shown that the PE weakly perturbs about 25% of the surface hydroxyl groups, and that all surface groups are available for reaction with silanes. The silica/PE is indefinitely stable in an aqueous environment and has advantages of at least 2 orders higher sensitivity and a wider spectral range over studies using oxidized silicon wafers. The usefulness of this technique for studying adsorption on metal oxide surfaces is demonstrated with the reaction of succinic anhydride on an aminosilanized silica surface. This reaction sequence is a common method used to prepare glass surfaces in the attachment of probe oligonucliotides for microarray biochip technology.
doi_str_mv 10.1366/0003702011952505
format Article
fullrecord <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1366_0003702011952505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1366_0003702011952505</sage_id><sourcerecordid>10.1366_0003702011952505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-8499b94069ad0962b49d8fa4b1376f6ce437a26903065bf6736d30e7fe3ebf473</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKt7l_kDozeTSdIsS_FRKChMXQ-ZTFJTpknNY9F_7xRdCa4Ol3O_w-EgdE_ggVDOHwGACqiBEMlqBuwCzYhsaEUZhUs0O9vV5C-u0U1K--lkkrIZ2q89Ti4XvPY2qmgGvDX607uvYrANEbe5DCfnd3g5pBCP2QWPg88Bv6uYnS6jyga3bnRa4bZEq7RJ2MZwwMspIpSE2zCWM5Zu0ZVVYzJ3vzpHH89P29VrtXl7Wa-Wm0rXQuZq0UjZywa4VANIXveNHBZWNT2hgluuTUOFqrkECpz1lgvKBwpGWENNbxtB5wh-cnUMKUVju2N0BxVPHYHuvFX3d6sJqX6QpHam24cS_dTw__9vBJBp_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>In situ Infrared Technique for Studying Adsorption onto Particulate Silica Surfaces from Aqueous Solutions</title><source>Access via SAGE</source><creator>Ninness, Brian J. ; Bousfield, Doug W. ; Tripp, Carl P.</creator><creatorcontrib>Ninness, Brian J. ; Bousfield, Doug W. ; Tripp, Carl P.</creatorcontrib><description>An in situ infrared technique is described which allows the detection of adsorbed surface species on metal oxide particles in an aqueous environment. The technique involves first formulating a “coating” comprised of high-surface-area silica particles and a polymeric binder in a suitable solvent. The resulting coating is applied to the surface of an internal reflection element and mounted in a flow-through attenuated total reflection (ATR) apparatus. The technique is demonstrated with a ZnSe element coated with fumed silica particles in a polyethylene (PE) matrix. Access of the silica surface in the matrix to adsorbates was evaluated by comparing the gas-phase reaction of silanes on silica/PE-coated CsI windows in transmission with silica/PE-coated ZnSe in an ATR evacuable cell. It is shown that the PE weakly perturbs about 25% of the surface hydroxyl groups, and that all surface groups are available for reaction with silanes. The silica/PE is indefinitely stable in an aqueous environment and has advantages of at least 2 orders higher sensitivity and a wider spectral range over studies using oxidized silicon wafers. The usefulness of this technique for studying adsorption on metal oxide surfaces is demonstrated with the reaction of succinic anhydride on an aminosilanized silica surface. This reaction sequence is a common method used to prepare glass surfaces in the attachment of probe oligonucliotides for microarray biochip technology.</description><identifier>ISSN: 0003-7028</identifier><identifier>EISSN: 1943-3530</identifier><identifier>DOI: 10.1366/0003702011952505</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>Applied spectroscopy, 2001-06, Vol.55 (6), p.655-662</ispartof><rights>2001 Society for Applied Spectroscopy</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c279t-8499b94069ad0962b49d8fa4b1376f6ce437a26903065bf6736d30e7fe3ebf473</citedby><cites>FETCH-LOGICAL-c279t-8499b94069ad0962b49d8fa4b1376f6ce437a26903065bf6736d30e7fe3ebf473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1366/0003702011952505$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1366/0003702011952505$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Ninness, Brian J.</creatorcontrib><creatorcontrib>Bousfield, Doug W.</creatorcontrib><creatorcontrib>Tripp, Carl P.</creatorcontrib><title>In situ Infrared Technique for Studying Adsorption onto Particulate Silica Surfaces from Aqueous Solutions</title><title>Applied spectroscopy</title><description>An in situ infrared technique is described which allows the detection of adsorbed surface species on metal oxide particles in an aqueous environment. The technique involves first formulating a “coating” comprised of high-surface-area silica particles and a polymeric binder in a suitable solvent. The resulting coating is applied to the surface of an internal reflection element and mounted in a flow-through attenuated total reflection (ATR) apparatus. The technique is demonstrated with a ZnSe element coated with fumed silica particles in a polyethylene (PE) matrix. Access of the silica surface in the matrix to adsorbates was evaluated by comparing the gas-phase reaction of silanes on silica/PE-coated CsI windows in transmission with silica/PE-coated ZnSe in an ATR evacuable cell. It is shown that the PE weakly perturbs about 25% of the surface hydroxyl groups, and that all surface groups are available for reaction with silanes. The silica/PE is indefinitely stable in an aqueous environment and has advantages of at least 2 orders higher sensitivity and a wider spectral range over studies using oxidized silicon wafers. The usefulness of this technique for studying adsorption on metal oxide surfaces is demonstrated with the reaction of succinic anhydride on an aminosilanized silica surface. This reaction sequence is a common method used to prepare glass surfaces in the attachment of probe oligonucliotides for microarray biochip technology.</description><issn>0003-7028</issn><issn>1943-3530</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKt7l_kDozeTSdIsS_FRKChMXQ-ZTFJTpknNY9F_7xRdCa4Ol3O_w-EgdE_ggVDOHwGACqiBEMlqBuwCzYhsaEUZhUs0O9vV5C-u0U1K--lkkrIZ2q89Ti4XvPY2qmgGvDX607uvYrANEbe5DCfnd3g5pBCP2QWPg88Bv6uYnS6jyga3bnRa4bZEq7RJ2MZwwMspIpSE2zCWM5Zu0ZVVYzJ3vzpHH89P29VrtXl7Wa-Wm0rXQuZq0UjZywa4VANIXveNHBZWNT2hgluuTUOFqrkECpz1lgvKBwpGWENNbxtB5wh-cnUMKUVju2N0BxVPHYHuvFX3d6sJqX6QpHam24cS_dTw__9vBJBp_w</recordid><startdate>200106</startdate><enddate>200106</enddate><creator>Ninness, Brian J.</creator><creator>Bousfield, Doug W.</creator><creator>Tripp, Carl P.</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200106</creationdate><title>In situ Infrared Technique for Studying Adsorption onto Particulate Silica Surfaces from Aqueous Solutions</title><author>Ninness, Brian J. ; Bousfield, Doug W. ; Tripp, Carl P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-8499b94069ad0962b49d8fa4b1376f6ce437a26903065bf6736d30e7fe3ebf473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ninness, Brian J.</creatorcontrib><creatorcontrib>Bousfield, Doug W.</creatorcontrib><creatorcontrib>Tripp, Carl P.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied spectroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ninness, Brian J.</au><au>Bousfield, Doug W.</au><au>Tripp, Carl P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In situ Infrared Technique for Studying Adsorption onto Particulate Silica Surfaces from Aqueous Solutions</atitle><jtitle>Applied spectroscopy</jtitle><date>2001-06</date><risdate>2001</risdate><volume>55</volume><issue>6</issue><spage>655</spage><epage>662</epage><pages>655-662</pages><issn>0003-7028</issn><eissn>1943-3530</eissn><abstract>An in situ infrared technique is described which allows the detection of adsorbed surface species on metal oxide particles in an aqueous environment. The technique involves first formulating a “coating” comprised of high-surface-area silica particles and a polymeric binder in a suitable solvent. The resulting coating is applied to the surface of an internal reflection element and mounted in a flow-through attenuated total reflection (ATR) apparatus. The technique is demonstrated with a ZnSe element coated with fumed silica particles in a polyethylene (PE) matrix. Access of the silica surface in the matrix to adsorbates was evaluated by comparing the gas-phase reaction of silanes on silica/PE-coated CsI windows in transmission with silica/PE-coated ZnSe in an ATR evacuable cell. It is shown that the PE weakly perturbs about 25% of the surface hydroxyl groups, and that all surface groups are available for reaction with silanes. The silica/PE is indefinitely stable in an aqueous environment and has advantages of at least 2 orders higher sensitivity and a wider spectral range over studies using oxidized silicon wafers. The usefulness of this technique for studying adsorption on metal oxide surfaces is demonstrated with the reaction of succinic anhydride on an aminosilanized silica surface. This reaction sequence is a common method used to prepare glass surfaces in the attachment of probe oligonucliotides for microarray biochip technology.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1366/0003702011952505</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-7028
ispartof Applied spectroscopy, 2001-06, Vol.55 (6), p.655-662
issn 0003-7028
1943-3530
language eng
recordid cdi_crossref_primary_10_1366_0003702011952505
source Access via SAGE
title In situ Infrared Technique for Studying Adsorption onto Particulate Silica Surfaces from Aqueous Solutions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A12%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20situ%20Infrared%20Technique%20for%20Studying%20Adsorption%20onto%20Particulate%20Silica%20Surfaces%20from%20Aqueous%20Solutions&rft.jtitle=Applied%20spectroscopy&rft.au=Ninness,%20Brian%20J.&rft.date=2001-06&rft.volume=55&rft.issue=6&rft.spage=655&rft.epage=662&rft.pages=655-662&rft.issn=0003-7028&rft.eissn=1943-3530&rft_id=info:doi/10.1366/0003702011952505&rft_dat=%3Csage_cross%3E10.1366_0003702011952505%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1366_0003702011952505&rfr_iscdi=true