Optomechanical preparation of photon number-squeezed states with a pair of thermal reservoirs of opposite temperatures

Photon number-squeezed states are of significant value in fundamental quantum research and have a wide range of applications in quantum metrology. Most of their preparation mechanisms require precise control of quantum dynamics and are less tolerant to dissipation. We propose a mechanism that is not...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Photonics research (Washington, DC) DC), 2023-09, Vol.11 (9), p.A26
Hauptverfasser: Zhu, Baiqiang, Zhang, Keye, Zhang, Weiping
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page A26
container_title Photonics research (Washington, DC)
container_volume 11
creator Zhu, Baiqiang
Zhang, Keye
Zhang, Weiping
description Photon number-squeezed states are of significant value in fundamental quantum research and have a wide range of applications in quantum metrology. Most of their preparation mechanisms require precise control of quantum dynamics and are less tolerant to dissipation. We propose a mechanism that is not subject to these restraints. In contrast to common approaches, we exploit the self-balancing between two types of dissipation induced by positive- and negative-temperature reservoirs to generate steady states with sub-Poissonian statistical distributions of photon numbers. We also show how to implement this mechanism with cavity optomechanical systems. The quality of the prepared photon number-squeezed state is estimated by our theoretical model combined with realistic parameters for various typical optomechanical systems.
doi_str_mv 10.1364/PRJ.491788
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1364_PRJ_491788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1364_PRJ_491788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c231t-6fe6f2c621c29caeb0c711558e7d418e86468332f43c823648c938c705cc7c523</originalsourceid><addsrcrecordid>eNpNkE1LxDAQhoMouKx78RfkLHRtkjZNj7L4sbKwInou2dkpjWybmKQr-utNWQ_OZV7eGZ7DQ8g1y5dMyOL25fV5WdSsUuqMzLjgVVYzXp7_y5dkEcJHnqYumCjljBy3LtoeodODAX2gzqPTXkdjB2pb6jobUxrGfoc-C58j4g_uaYg6YqBfJnZUU6eNn55jh75PDI8B_dEaH6bWOmeDiUgj9g4Tekz3K3LR6kPAxd-ek_eH-7fVU7bZPq5Xd5sMuGAxky3KloPkDHgNGnc5VIyVpcJqXzCFShZSCcHbQoDiyYGCWiio8hKggpKLObk5ccHbEDy2jfOm1_67YXkzSWuStOYkTfwC-edhoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optomechanical preparation of photon number-squeezed states with a pair of thermal reservoirs of opposite temperatures</title><source>OSA Publishing</source><source>EZB Electronic Journals Library</source><creator>Zhu, Baiqiang ; Zhang, Keye ; Zhang, Weiping</creator><creatorcontrib>Zhu, Baiqiang ; Zhang, Keye ; Zhang, Weiping</creatorcontrib><description>Photon number-squeezed states are of significant value in fundamental quantum research and have a wide range of applications in quantum metrology. Most of their preparation mechanisms require precise control of quantum dynamics and are less tolerant to dissipation. We propose a mechanism that is not subject to these restraints. In contrast to common approaches, we exploit the self-balancing between two types of dissipation induced by positive- and negative-temperature reservoirs to generate steady states with sub-Poissonian statistical distributions of photon numbers. We also show how to implement this mechanism with cavity optomechanical systems. The quality of the prepared photon number-squeezed state is estimated by our theoretical model combined with realistic parameters for various typical optomechanical systems.</description><identifier>ISSN: 2327-9125</identifier><identifier>EISSN: 2327-9125</identifier><identifier>DOI: 10.1364/PRJ.491788</identifier><language>eng</language><ispartof>Photonics research (Washington, DC), 2023-09, Vol.11 (9), p.A26</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c231t-6fe6f2c621c29caeb0c711558e7d418e86468332f43c823648c938c705cc7c523</citedby><cites>FETCH-LOGICAL-c231t-6fe6f2c621c29caeb0c711558e7d418e86468332f43c823648c938c705cc7c523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3258,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhu, Baiqiang</creatorcontrib><creatorcontrib>Zhang, Keye</creatorcontrib><creatorcontrib>Zhang, Weiping</creatorcontrib><title>Optomechanical preparation of photon number-squeezed states with a pair of thermal reservoirs of opposite temperatures</title><title>Photonics research (Washington, DC)</title><description>Photon number-squeezed states are of significant value in fundamental quantum research and have a wide range of applications in quantum metrology. Most of their preparation mechanisms require precise control of quantum dynamics and are less tolerant to dissipation. We propose a mechanism that is not subject to these restraints. In contrast to common approaches, we exploit the self-balancing between two types of dissipation induced by positive- and negative-temperature reservoirs to generate steady states with sub-Poissonian statistical distributions of photon numbers. We also show how to implement this mechanism with cavity optomechanical systems. The quality of the prepared photon number-squeezed state is estimated by our theoretical model combined with realistic parameters for various typical optomechanical systems.</description><issn>2327-9125</issn><issn>2327-9125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LxDAQhoMouKx78RfkLHRtkjZNj7L4sbKwInou2dkpjWybmKQr-utNWQ_OZV7eGZ7DQ8g1y5dMyOL25fV5WdSsUuqMzLjgVVYzXp7_y5dkEcJHnqYumCjljBy3LtoeodODAX2gzqPTXkdjB2pb6jobUxrGfoc-C58j4g_uaYg6YqBfJnZUU6eNn55jh75PDI8B_dEaH6bWOmeDiUgj9g4Tekz3K3LR6kPAxd-ek_eH-7fVU7bZPq5Xd5sMuGAxky3KloPkDHgNGnc5VIyVpcJqXzCFShZSCcHbQoDiyYGCWiio8hKggpKLObk5ccHbEDy2jfOm1_67YXkzSWuStOYkTfwC-edhoQ</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Zhu, Baiqiang</creator><creator>Zhang, Keye</creator><creator>Zhang, Weiping</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230901</creationdate><title>Optomechanical preparation of photon number-squeezed states with a pair of thermal reservoirs of opposite temperatures</title><author>Zhu, Baiqiang ; Zhang, Keye ; Zhang, Weiping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c231t-6fe6f2c621c29caeb0c711558e7d418e86468332f43c823648c938c705cc7c523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Baiqiang</creatorcontrib><creatorcontrib>Zhang, Keye</creatorcontrib><creatorcontrib>Zhang, Weiping</creatorcontrib><collection>CrossRef</collection><jtitle>Photonics research (Washington, DC)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Baiqiang</au><au>Zhang, Keye</au><au>Zhang, Weiping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optomechanical preparation of photon number-squeezed states with a pair of thermal reservoirs of opposite temperatures</atitle><jtitle>Photonics research (Washington, DC)</jtitle><date>2023-09-01</date><risdate>2023</risdate><volume>11</volume><issue>9</issue><spage>A26</spage><pages>A26-</pages><issn>2327-9125</issn><eissn>2327-9125</eissn><abstract>Photon number-squeezed states are of significant value in fundamental quantum research and have a wide range of applications in quantum metrology. Most of their preparation mechanisms require precise control of quantum dynamics and are less tolerant to dissipation. We propose a mechanism that is not subject to these restraints. In contrast to common approaches, we exploit the self-balancing between two types of dissipation induced by positive- and negative-temperature reservoirs to generate steady states with sub-Poissonian statistical distributions of photon numbers. We also show how to implement this mechanism with cavity optomechanical systems. The quality of the prepared photon number-squeezed state is estimated by our theoretical model combined with realistic parameters for various typical optomechanical systems.</abstract><doi>10.1364/PRJ.491788</doi></addata></record>
fulltext fulltext
identifier ISSN: 2327-9125
ispartof Photonics research (Washington, DC), 2023-09, Vol.11 (9), p.A26
issn 2327-9125
2327-9125
language eng
recordid cdi_crossref_primary_10_1364_PRJ_491788
source OSA Publishing; EZB Electronic Journals Library
title Optomechanical preparation of photon number-squeezed states with a pair of thermal reservoirs of opposite temperatures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A13%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optomechanical%20preparation%20of%20photon%20number-squeezed%20states%20with%20a%20pair%20of%20thermal%20reservoirs%20of%20opposite%20temperatures&rft.jtitle=Photonics%20research%20(Washington,%20DC)&rft.au=Zhu,%20Baiqiang&rft.date=2023-09-01&rft.volume=11&rft.issue=9&rft.spage=A26&rft.pages=A26-&rft.issn=2327-9125&rft.eissn=2327-9125&rft_id=info:doi/10.1364/PRJ.491788&rft_dat=%3Ccrossref%3E10_1364_PRJ_491788%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true