Multiband metamaterial emitters for infrared and laser compatible stealth with thermal management based on dissipative dielectrics

The modulation of thermal radiation in the infrared region is a highly anticipated method to achieve infrared sensing and camouflage. Here, a multiband metamaterial emitter based on the Al / SiO 2 / Al nanosandwich structure is proposed to provide new ideas for effective infrared and laser-compatibl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Photonics research (Washington, DC) DC), 2023-02, Vol.11 (2), p.290
Hauptverfasser: Yu, Kun, Zhang, Wei, Qian, Mengdan, Shen, Peng, Liu, Yufang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 290
container_title Photonics research (Washington, DC)
container_volume 11
creator Yu, Kun
Zhang, Wei
Qian, Mengdan
Shen, Peng
Liu, Yufang
description The modulation of thermal radiation in the infrared region is a highly anticipated method to achieve infrared sensing and camouflage. Here, a multiband metamaterial emitter based on the Al / SiO 2 / Al nanosandwich structure is proposed to provide new ideas for effective infrared and laser-compatible camouflage. By virtue of the intrinsic absorption and magnetic resonance property of lossy materials, the thermal radiation in the infrared region can be rationally modulated. The fabricated samples generally present low emissivity ( ε 3 – 5   μm = 0.21 , ε 8 – 14   μm = 0.19 ) in the atmospheric windows to evade infrared detection as well as high emissivity ( ε 5 – 8   μm = 0.43 ) in the undetected band for energy dissipation. Additionally, the laser camouflage is also realized by introducing a strong absorption at 10.6 μm through the nonlocalized plasmon resonance of the SiO 2 layer. Moreover, the fabricated emitter shows promising prospects in thermal management due to the good radiative cooling property that is comparable to the metallic Al material. This work demonstrates a multiband emitter based on the metasurface structure with compatible infrared-laser camouflage as well as radiative cooling properties, which is expected to pave new routes for the design of thermal radiation devices.
doi_str_mv 10.1364/PRJ.476109
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1364_PRJ_476109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1364_PRJ_476109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c161t-cfc129e5754ad5bb5befc15d413ad9f083b9abdcf96dbb214c5c5bdf373165c23</originalsourceid><addsrcrecordid>eNpNkE9LAzEQxYMoWGovfoKcha2bzWbXHKX4l4oiel4mycRGkt2SRMWrn9yUenAOM49hfg_mEXLK6iXjXXv-9Hy_bPuO1fKAzBre9JVkjTj8p4_JIqX3upRsGRfdjPw8fPjsFIyGBswQIGN04CkGl4tM1E6RutFGiGjo7sxDwkj1FLZQQI80ZQSfN_TLlZY3GEPhA4zwhgHHTFUBDJ1GalxKbkd9YtHoUefodDohRxZ8wsXfnJPX66uX1W21fry5W12uK806littNWskil60YIRSQmHZCFMeASNtfcGVBGW0lZ1RqmGtFlooY3nPWSd0w-fkbO-r45RSRDtsowsQvwdWD7sAhxLgsA-Q_wK0ZWfB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multiband metamaterial emitters for infrared and laser compatible stealth with thermal management based on dissipative dielectrics</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Optica Publishing Group Journals</source><creator>Yu, Kun ; Zhang, Wei ; Qian, Mengdan ; Shen, Peng ; Liu, Yufang</creator><creatorcontrib>Yu, Kun ; Zhang, Wei ; Qian, Mengdan ; Shen, Peng ; Liu, Yufang</creatorcontrib><description>The modulation of thermal radiation in the infrared region is a highly anticipated method to achieve infrared sensing and camouflage. Here, a multiband metamaterial emitter based on the Al / SiO 2 / Al nanosandwich structure is proposed to provide new ideas for effective infrared and laser-compatible camouflage. By virtue of the intrinsic absorption and magnetic resonance property of lossy materials, the thermal radiation in the infrared region can be rationally modulated. The fabricated samples generally present low emissivity ( ε 3 – 5   μm = 0.21 , ε 8 – 14   μm = 0.19 ) in the atmospheric windows to evade infrared detection as well as high emissivity ( ε 5 – 8   μm = 0.43 ) in the undetected band for energy dissipation. Additionally, the laser camouflage is also realized by introducing a strong absorption at 10.6 μm through the nonlocalized plasmon resonance of the SiO 2 layer. Moreover, the fabricated emitter shows promising prospects in thermal management due to the good radiative cooling property that is comparable to the metallic Al material. This work demonstrates a multiband emitter based on the metasurface structure with compatible infrared-laser camouflage as well as radiative cooling properties, which is expected to pave new routes for the design of thermal radiation devices.</description><identifier>ISSN: 2327-9125</identifier><identifier>EISSN: 2327-9125</identifier><identifier>DOI: 10.1364/PRJ.476109</identifier><language>eng</language><ispartof>Photonics research (Washington, DC), 2023-02, Vol.11 (2), p.290</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c161t-cfc129e5754ad5bb5befc15d413ad9f083b9abdcf96dbb214c5c5bdf373165c23</citedby><cites>FETCH-LOGICAL-c161t-cfc129e5754ad5bb5befc15d413ad9f083b9abdcf96dbb214c5c5bdf373165c23</cites><orcidid>0000-0003-1896-8864</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,3245,27905,27906</link.rule.ids></links><search><creatorcontrib>Yu, Kun</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Qian, Mengdan</creatorcontrib><creatorcontrib>Shen, Peng</creatorcontrib><creatorcontrib>Liu, Yufang</creatorcontrib><title>Multiband metamaterial emitters for infrared and laser compatible stealth with thermal management based on dissipative dielectrics</title><title>Photonics research (Washington, DC)</title><description>The modulation of thermal radiation in the infrared region is a highly anticipated method to achieve infrared sensing and camouflage. Here, a multiband metamaterial emitter based on the Al / SiO 2 / Al nanosandwich structure is proposed to provide new ideas for effective infrared and laser-compatible camouflage. By virtue of the intrinsic absorption and magnetic resonance property of lossy materials, the thermal radiation in the infrared region can be rationally modulated. The fabricated samples generally present low emissivity ( ε 3 – 5   μm = 0.21 , ε 8 – 14   μm = 0.19 ) in the atmospheric windows to evade infrared detection as well as high emissivity ( ε 5 – 8   μm = 0.43 ) in the undetected band for energy dissipation. Additionally, the laser camouflage is also realized by introducing a strong absorption at 10.6 μm through the nonlocalized plasmon resonance of the SiO 2 layer. Moreover, the fabricated emitter shows promising prospects in thermal management due to the good radiative cooling property that is comparable to the metallic Al material. This work demonstrates a multiband emitter based on the metasurface structure with compatible infrared-laser camouflage as well as radiative cooling properties, which is expected to pave new routes for the design of thermal radiation devices.</description><issn>2327-9125</issn><issn>2327-9125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkE9LAzEQxYMoWGovfoKcha2bzWbXHKX4l4oiel4mycRGkt2SRMWrn9yUenAOM49hfg_mEXLK6iXjXXv-9Hy_bPuO1fKAzBre9JVkjTj8p4_JIqX3upRsGRfdjPw8fPjsFIyGBswQIGN04CkGl4tM1E6RutFGiGjo7sxDwkj1FLZQQI80ZQSfN_TLlZY3GEPhA4zwhgHHTFUBDJ1GalxKbkd9YtHoUefodDohRxZ8wsXfnJPX66uX1W21fry5W12uK806littNWskil60YIRSQmHZCFMeASNtfcGVBGW0lZ1RqmGtFlooY3nPWSd0w-fkbO-r45RSRDtsowsQvwdWD7sAhxLgsA-Q_wK0ZWfB</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Yu, Kun</creator><creator>Zhang, Wei</creator><creator>Qian, Mengdan</creator><creator>Shen, Peng</creator><creator>Liu, Yufang</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1896-8864</orcidid></search><sort><creationdate>20230201</creationdate><title>Multiband metamaterial emitters for infrared and laser compatible stealth with thermal management based on dissipative dielectrics</title><author>Yu, Kun ; Zhang, Wei ; Qian, Mengdan ; Shen, Peng ; Liu, Yufang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c161t-cfc129e5754ad5bb5befc15d413ad9f083b9abdcf96dbb214c5c5bdf373165c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Kun</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Qian, Mengdan</creatorcontrib><creatorcontrib>Shen, Peng</creatorcontrib><creatorcontrib>Liu, Yufang</creatorcontrib><collection>CrossRef</collection><jtitle>Photonics research (Washington, DC)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Kun</au><au>Zhang, Wei</au><au>Qian, Mengdan</au><au>Shen, Peng</au><au>Liu, Yufang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiband metamaterial emitters for infrared and laser compatible stealth with thermal management based on dissipative dielectrics</atitle><jtitle>Photonics research (Washington, DC)</jtitle><date>2023-02-01</date><risdate>2023</risdate><volume>11</volume><issue>2</issue><spage>290</spage><pages>290-</pages><issn>2327-9125</issn><eissn>2327-9125</eissn><abstract>The modulation of thermal radiation in the infrared region is a highly anticipated method to achieve infrared sensing and camouflage. Here, a multiband metamaterial emitter based on the Al / SiO 2 / Al nanosandwich structure is proposed to provide new ideas for effective infrared and laser-compatible camouflage. By virtue of the intrinsic absorption and magnetic resonance property of lossy materials, the thermal radiation in the infrared region can be rationally modulated. The fabricated samples generally present low emissivity ( ε 3 – 5   μm = 0.21 , ε 8 – 14   μm = 0.19 ) in the atmospheric windows to evade infrared detection as well as high emissivity ( ε 5 – 8   μm = 0.43 ) in the undetected band for energy dissipation. Additionally, the laser camouflage is also realized by introducing a strong absorption at 10.6 μm through the nonlocalized plasmon resonance of the SiO 2 layer. Moreover, the fabricated emitter shows promising prospects in thermal management due to the good radiative cooling property that is comparable to the metallic Al material. This work demonstrates a multiband emitter based on the metasurface structure with compatible infrared-laser camouflage as well as radiative cooling properties, which is expected to pave new routes for the design of thermal radiation devices.</abstract><doi>10.1364/PRJ.476109</doi><orcidid>https://orcid.org/0000-0003-1896-8864</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2327-9125
ispartof Photonics research (Washington, DC), 2023-02, Vol.11 (2), p.290
issn 2327-9125
2327-9125
language eng
recordid cdi_crossref_primary_10_1364_PRJ_476109
source EZB-FREE-00999 freely available EZB journals; Optica Publishing Group Journals
title Multiband metamaterial emitters for infrared and laser compatible stealth with thermal management based on dissipative dielectrics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A21%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiband%20metamaterial%20emitters%20for%20infrared%20and%20laser%20compatible%20stealth%20with%20thermal%20management%20based%20on%20dissipative%20dielectrics&rft.jtitle=Photonics%20research%20(Washington,%20DC)&rft.au=Yu,%20Kun&rft.date=2023-02-01&rft.volume=11&rft.issue=2&rft.spage=290&rft.pages=290-&rft.issn=2327-9125&rft.eissn=2327-9125&rft_id=info:doi/10.1364/PRJ.476109&rft_dat=%3Ccrossref%3E10_1364_PRJ_476109%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true