Memory-assisted quantum accelerometer with multi-bandwidth

The accelerometer plays a crucial role in inertial navigation. The performance of conventional accelerometers such as lasers is usually limited by the sensing elements and shot noise limitation (SNL). Here, we propose an advanced development of an accelerometer based on atom–light quantum correlatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Photonics research (Washington, DC) DC), 2022-04, Vol.10 (4), p.1022
Hauptverfasser: Yu, Zhifei, Fang, Bo, Chen, Liqing, Zhang, Keye, Yuan, Chun-Hua, Zhang, Weiping
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 1022
container_title Photonics research (Washington, DC)
container_volume 10
creator Yu, Zhifei
Fang, Bo
Chen, Liqing
Zhang, Keye
Yuan, Chun-Hua
Zhang, Weiping
description The accelerometer plays a crucial role in inertial navigation. The performance of conventional accelerometers such as lasers is usually limited by the sensing elements and shot noise limitation (SNL). Here, we propose an advanced development of an accelerometer based on atom–light quantum correlation, which is composed of a cold atomic ensemble, light beams, and an atomic vapor cell. The cold atomic ensemble, prepared in a magneto-optical trap and free-falling in a vacuum chamber, interacts with light beams to generate atom–light quantum correlation. The atomic vapor cell is used as both a memory element storing the correlated photons emitted from cold atoms and a bandwidth controller through the control of free evolution time. Instead of using a conventional sensing element, the proposed accelerometer employs interference between quantum-correlated atoms and light to measure acceleration. Sensitivity below SNL can be achieved due to atom–light quantum correlation, even in the presence of optical loss and atomic decoherence. Sensitivity can be achieved at the ng / Hz level, based on evaluation via practical experimental conditions. The present design has a number of significant advantages over conventional accelerometers such as SNL-broken sensitivity, broad bandwidth from a few hundred Hz to near MHz, and avoidance of the technical restrictions of conventional sensing elements.
doi_str_mv 10.1364/PRJ.453940
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1364_PRJ_453940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1364_PRJ_453940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c231t-47cadf132b0f82302892e2aaad0d4a575b6a592954cfe6516271f01389cece6b3</originalsourceid><addsrcrecordid>eNpNz81KAzEUBeAgCpa2G59g1kJq_mfiTopapUURXQ93khs6MtPRJEPp21upC8_mnNWBj5ArzhZcGnXz-va8UFpaxc7IREhRUsuFPv-3L8k8pU92jFVcajMhtxvsh3igkFKbMvrie4RdHvsCnMMO49Bjxljs27wt-rHLLW1g5_etz9sZuQjQJZz_9ZR8PNy_L1d0_fL4tLxbUyckz1SVDnzgUjQsVEIyUVmBAgA88wp0qRsD2gqrlQtoNDei5IFxWVmHDk0jp-T69OvikFLEUH_Ftod4qDmrf-H1EV6f4PIHAi1LMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Memory-assisted quantum accelerometer with multi-bandwidth</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Optica Publishing Group Journals</source><creator>Yu, Zhifei ; Fang, Bo ; Chen, Liqing ; Zhang, Keye ; Yuan, Chun-Hua ; Zhang, Weiping</creator><creatorcontrib>Yu, Zhifei ; Fang, Bo ; Chen, Liqing ; Zhang, Keye ; Yuan, Chun-Hua ; Zhang, Weiping</creatorcontrib><description>The accelerometer plays a crucial role in inertial navigation. The performance of conventional accelerometers such as lasers is usually limited by the sensing elements and shot noise limitation (SNL). Here, we propose an advanced development of an accelerometer based on atom–light quantum correlation, which is composed of a cold atomic ensemble, light beams, and an atomic vapor cell. The cold atomic ensemble, prepared in a magneto-optical trap and free-falling in a vacuum chamber, interacts with light beams to generate atom–light quantum correlation. The atomic vapor cell is used as both a memory element storing the correlated photons emitted from cold atoms and a bandwidth controller through the control of free evolution time. Instead of using a conventional sensing element, the proposed accelerometer employs interference between quantum-correlated atoms and light to measure acceleration. Sensitivity below SNL can be achieved due to atom–light quantum correlation, even in the presence of optical loss and atomic decoherence. Sensitivity can be achieved at the ng / Hz level, based on evaluation via practical experimental conditions. The present design has a number of significant advantages over conventional accelerometers such as SNL-broken sensitivity, broad bandwidth from a few hundred Hz to near MHz, and avoidance of the technical restrictions of conventional sensing elements.</description><identifier>ISSN: 2327-9125</identifier><identifier>EISSN: 2327-9125</identifier><identifier>DOI: 10.1364/PRJ.453940</identifier><language>eng</language><ispartof>Photonics research (Washington, DC), 2022-04, Vol.10 (4), p.1022</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c231t-47cadf132b0f82302892e2aaad0d4a575b6a592954cfe6516271f01389cece6b3</citedby><cites>FETCH-LOGICAL-c231t-47cadf132b0f82302892e2aaad0d4a575b6a592954cfe6516271f01389cece6b3</cites><orcidid>0000-0002-9860-6275</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3245,27901,27902</link.rule.ids></links><search><creatorcontrib>Yu, Zhifei</creatorcontrib><creatorcontrib>Fang, Bo</creatorcontrib><creatorcontrib>Chen, Liqing</creatorcontrib><creatorcontrib>Zhang, Keye</creatorcontrib><creatorcontrib>Yuan, Chun-Hua</creatorcontrib><creatorcontrib>Zhang, Weiping</creatorcontrib><title>Memory-assisted quantum accelerometer with multi-bandwidth</title><title>Photonics research (Washington, DC)</title><description>The accelerometer plays a crucial role in inertial navigation. The performance of conventional accelerometers such as lasers is usually limited by the sensing elements and shot noise limitation (SNL). Here, we propose an advanced development of an accelerometer based on atom–light quantum correlation, which is composed of a cold atomic ensemble, light beams, and an atomic vapor cell. The cold atomic ensemble, prepared in a magneto-optical trap and free-falling in a vacuum chamber, interacts with light beams to generate atom–light quantum correlation. The atomic vapor cell is used as both a memory element storing the correlated photons emitted from cold atoms and a bandwidth controller through the control of free evolution time. Instead of using a conventional sensing element, the proposed accelerometer employs interference between quantum-correlated atoms and light to measure acceleration. Sensitivity below SNL can be achieved due to atom–light quantum correlation, even in the presence of optical loss and atomic decoherence. Sensitivity can be achieved at the ng / Hz level, based on evaluation via practical experimental conditions. The present design has a number of significant advantages over conventional accelerometers such as SNL-broken sensitivity, broad bandwidth from a few hundred Hz to near MHz, and avoidance of the technical restrictions of conventional sensing elements.</description><issn>2327-9125</issn><issn>2327-9125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNz81KAzEUBeAgCpa2G59g1kJq_mfiTopapUURXQ93khs6MtPRJEPp21upC8_mnNWBj5ArzhZcGnXz-va8UFpaxc7IREhRUsuFPv-3L8k8pU92jFVcajMhtxvsh3igkFKbMvrie4RdHvsCnMMO49Bjxljs27wt-rHLLW1g5_etz9sZuQjQJZz_9ZR8PNy_L1d0_fL4tLxbUyckz1SVDnzgUjQsVEIyUVmBAgA88wp0qRsD2gqrlQtoNDei5IFxWVmHDk0jp-T69OvikFLEUH_Ftod4qDmrf-H1EV6f4PIHAi1LMg</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Yu, Zhifei</creator><creator>Fang, Bo</creator><creator>Chen, Liqing</creator><creator>Zhang, Keye</creator><creator>Yuan, Chun-Hua</creator><creator>Zhang, Weiping</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9860-6275</orcidid></search><sort><creationdate>20220401</creationdate><title>Memory-assisted quantum accelerometer with multi-bandwidth</title><author>Yu, Zhifei ; Fang, Bo ; Chen, Liqing ; Zhang, Keye ; Yuan, Chun-Hua ; Zhang, Weiping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c231t-47cadf132b0f82302892e2aaad0d4a575b6a592954cfe6516271f01389cece6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Zhifei</creatorcontrib><creatorcontrib>Fang, Bo</creatorcontrib><creatorcontrib>Chen, Liqing</creatorcontrib><creatorcontrib>Zhang, Keye</creatorcontrib><creatorcontrib>Yuan, Chun-Hua</creatorcontrib><creatorcontrib>Zhang, Weiping</creatorcontrib><collection>CrossRef</collection><jtitle>Photonics research (Washington, DC)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Zhifei</au><au>Fang, Bo</au><au>Chen, Liqing</au><au>Zhang, Keye</au><au>Yuan, Chun-Hua</au><au>Zhang, Weiping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Memory-assisted quantum accelerometer with multi-bandwidth</atitle><jtitle>Photonics research (Washington, DC)</jtitle><date>2022-04-01</date><risdate>2022</risdate><volume>10</volume><issue>4</issue><spage>1022</spage><pages>1022-</pages><issn>2327-9125</issn><eissn>2327-9125</eissn><abstract>The accelerometer plays a crucial role in inertial navigation. The performance of conventional accelerometers such as lasers is usually limited by the sensing elements and shot noise limitation (SNL). Here, we propose an advanced development of an accelerometer based on atom–light quantum correlation, which is composed of a cold atomic ensemble, light beams, and an atomic vapor cell. The cold atomic ensemble, prepared in a magneto-optical trap and free-falling in a vacuum chamber, interacts with light beams to generate atom–light quantum correlation. The atomic vapor cell is used as both a memory element storing the correlated photons emitted from cold atoms and a bandwidth controller through the control of free evolution time. Instead of using a conventional sensing element, the proposed accelerometer employs interference between quantum-correlated atoms and light to measure acceleration. Sensitivity below SNL can be achieved due to atom–light quantum correlation, even in the presence of optical loss and atomic decoherence. Sensitivity can be achieved at the ng / Hz level, based on evaluation via practical experimental conditions. The present design has a number of significant advantages over conventional accelerometers such as SNL-broken sensitivity, broad bandwidth from a few hundred Hz to near MHz, and avoidance of the technical restrictions of conventional sensing elements.</abstract><doi>10.1364/PRJ.453940</doi><orcidid>https://orcid.org/0000-0002-9860-6275</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2327-9125
ispartof Photonics research (Washington, DC), 2022-04, Vol.10 (4), p.1022
issn 2327-9125
2327-9125
language eng
recordid cdi_crossref_primary_10_1364_PRJ_453940
source EZB-FREE-00999 freely available EZB journals; Optica Publishing Group Journals
title Memory-assisted quantum accelerometer with multi-bandwidth
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T08%3A46%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Memory-assisted%20quantum%20accelerometer%20with%20multi-bandwidth&rft.jtitle=Photonics%20research%20(Washington,%20DC)&rft.au=Yu,%20Zhifei&rft.date=2022-04-01&rft.volume=10&rft.issue=4&rft.spage=1022&rft.pages=1022-&rft.issn=2327-9125&rft.eissn=2327-9125&rft_id=info:doi/10.1364/PRJ.453940&rft_dat=%3Ccrossref%3E10_1364_PRJ_453940%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true