Backpropagation through nonlinear units for the all-optical training of neural networks
We propose a practical scheme for end-to-end optical backpropagation in neural networks. Using saturable absorption for the nonlinear units, we find that the backward-propagating gradients required to train the network can be approximated in a surprisingly simple pump-probe scheme that requires only...
Gespeichert in:
Veröffentlicht in: | Photonics research (Washington, DC) DC), 2021-03, Vol.9 (3), p.B71 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | B71 |
container_title | Photonics research (Washington, DC) |
container_volume | 9 |
creator | Guo, Xianxin Barrett, Thomas D. Wang, Zhiming M. Lvovsky, A. I. |
description | We propose a practical scheme for end-to-end optical backpropagation in neural networks. Using saturable absorption for the nonlinear units, we find that the backward-propagating gradients required to train the network can be approximated in a surprisingly simple pump-probe scheme that requires only simple passive optical elements. Simulations show that, with readily obtainable optical depths, our approach can achieve equivalent performance to state-of-the-art computational networks on image classification benchmarks, even in deep networks with multiple sequential gradient approximation. With backpropagation through nonlinear units being an outstanding challenge to the field, this work provides a feasible path toward truly all-optical neural networks. |
doi_str_mv | 10.1364/PRJ.411104 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1364_PRJ_411104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1364_PRJ_411104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-ba5a089d49e2fe89147f1d5a0761212870b39f54795ea63a63ef3b15682fd5303</originalsourceid><addsrcrecordid>eNpNkE1LxDAQhoMouKx78RfkLHTN5KNpjrr4yYIiiseStkk3bk1KkiL-eyvrwZeBd3gG5vAgdA5kDazkl88vj2sOAIQfoQVlVBYKqDj-t5-iVUofZI7iwES5QO_Xut2PMYy619kFj_MuhqnfYR_84LzREU_e5YRtiPPNYD0MRRiza_WAc9TOO9_jYLE3U5yRN_krxH06QydWD8ms_nqJ3m5vXjf3xfbp7mFztS1aqmQuGi00qVTHlaHWVAq4tNDNTJZAgVaSNExZwaUSRpdsHmNZA6KsqO0EI2yJLg5_2xhSisbWY3SfOn7XQOpfK_VspT5YYT-IMlU_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Backpropagation through nonlinear units for the all-optical training of neural networks</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Optica Publishing Group Journals</source><creator>Guo, Xianxin ; Barrett, Thomas D. ; Wang, Zhiming M. ; Lvovsky, A. I.</creator><creatorcontrib>Guo, Xianxin ; Barrett, Thomas D. ; Wang, Zhiming M. ; Lvovsky, A. I.</creatorcontrib><description>We propose a practical scheme for end-to-end optical backpropagation in neural networks. Using saturable absorption for the nonlinear units, we find that the backward-propagating gradients required to train the network can be approximated in a surprisingly simple pump-probe scheme that requires only simple passive optical elements. Simulations show that, with readily obtainable optical depths, our approach can achieve equivalent performance to state-of-the-art computational networks on image classification benchmarks, even in deep networks with multiple sequential gradient approximation. With backpropagation through nonlinear units being an outstanding challenge to the field, this work provides a feasible path toward truly all-optical neural networks.</description><identifier>ISSN: 2327-9125</identifier><identifier>EISSN: 2327-9125</identifier><identifier>DOI: 10.1364/PRJ.411104</identifier><language>eng</language><ispartof>Photonics research (Washington, DC), 2021-03, Vol.9 (3), p.B71</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-ba5a089d49e2fe89147f1d5a0761212870b39f54795ea63a63ef3b15682fd5303</citedby><cites>FETCH-LOGICAL-c297t-ba5a089d49e2fe89147f1d5a0761212870b39f54795ea63a63ef3b15682fd5303</cites><orcidid>0000-0003-2094-0123 ; 0000-0001-6241-3028</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3258,27924,27925</link.rule.ids></links><search><creatorcontrib>Guo, Xianxin</creatorcontrib><creatorcontrib>Barrett, Thomas D.</creatorcontrib><creatorcontrib>Wang, Zhiming M.</creatorcontrib><creatorcontrib>Lvovsky, A. I.</creatorcontrib><title>Backpropagation through nonlinear units for the all-optical training of neural networks</title><title>Photonics research (Washington, DC)</title><description>We propose a practical scheme for end-to-end optical backpropagation in neural networks. Using saturable absorption for the nonlinear units, we find that the backward-propagating gradients required to train the network can be approximated in a surprisingly simple pump-probe scheme that requires only simple passive optical elements. Simulations show that, with readily obtainable optical depths, our approach can achieve equivalent performance to state-of-the-art computational networks on image classification benchmarks, even in deep networks with multiple sequential gradient approximation. With backpropagation through nonlinear units being an outstanding challenge to the field, this work provides a feasible path toward truly all-optical neural networks.</description><issn>2327-9125</issn><issn>2327-9125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LxDAQhoMouKx78RfkLHTN5KNpjrr4yYIiiseStkk3bk1KkiL-eyvrwZeBd3gG5vAgdA5kDazkl88vj2sOAIQfoQVlVBYKqDj-t5-iVUofZI7iwES5QO_Xut2PMYy619kFj_MuhqnfYR_84LzREU_e5YRtiPPNYD0MRRiza_WAc9TOO9_jYLE3U5yRN_krxH06QydWD8ms_nqJ3m5vXjf3xfbp7mFztS1aqmQuGi00qVTHlaHWVAq4tNDNTJZAgVaSNExZwaUSRpdsHmNZA6KsqO0EI2yJLg5_2xhSisbWY3SfOn7XQOpfK_VspT5YYT-IMlU_</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Guo, Xianxin</creator><creator>Barrett, Thomas D.</creator><creator>Wang, Zhiming M.</creator><creator>Lvovsky, A. I.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2094-0123</orcidid><orcidid>https://orcid.org/0000-0001-6241-3028</orcidid></search><sort><creationdate>20210301</creationdate><title>Backpropagation through nonlinear units for the all-optical training of neural networks</title><author>Guo, Xianxin ; Barrett, Thomas D. ; Wang, Zhiming M. ; Lvovsky, A. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-ba5a089d49e2fe89147f1d5a0761212870b39f54795ea63a63ef3b15682fd5303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Xianxin</creatorcontrib><creatorcontrib>Barrett, Thomas D.</creatorcontrib><creatorcontrib>Wang, Zhiming M.</creatorcontrib><creatorcontrib>Lvovsky, A. I.</creatorcontrib><collection>CrossRef</collection><jtitle>Photonics research (Washington, DC)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Xianxin</au><au>Barrett, Thomas D.</au><au>Wang, Zhiming M.</au><au>Lvovsky, A. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Backpropagation through nonlinear units for the all-optical training of neural networks</atitle><jtitle>Photonics research (Washington, DC)</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>9</volume><issue>3</issue><spage>B71</spage><pages>B71-</pages><issn>2327-9125</issn><eissn>2327-9125</eissn><abstract>We propose a practical scheme for end-to-end optical backpropagation in neural networks. Using saturable absorption for the nonlinear units, we find that the backward-propagating gradients required to train the network can be approximated in a surprisingly simple pump-probe scheme that requires only simple passive optical elements. Simulations show that, with readily obtainable optical depths, our approach can achieve equivalent performance to state-of-the-art computational networks on image classification benchmarks, even in deep networks with multiple sequential gradient approximation. With backpropagation through nonlinear units being an outstanding challenge to the field, this work provides a feasible path toward truly all-optical neural networks.</abstract><doi>10.1364/PRJ.411104</doi><orcidid>https://orcid.org/0000-0003-2094-0123</orcidid><orcidid>https://orcid.org/0000-0001-6241-3028</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2327-9125 |
ispartof | Photonics research (Washington, DC), 2021-03, Vol.9 (3), p.B71 |
issn | 2327-9125 2327-9125 |
language | eng |
recordid | cdi_crossref_primary_10_1364_PRJ_411104 |
source | EZB-FREE-00999 freely available EZB journals; Optica Publishing Group Journals |
title | Backpropagation through nonlinear units for the all-optical training of neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A24%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Backpropagation%20through%20nonlinear%20units%20for%20the%20all-optical%20training%20of%20neural%20networks&rft.jtitle=Photonics%20research%20(Washington,%20DC)&rft.au=Guo,%20Xianxin&rft.date=2021-03-01&rft.volume=9&rft.issue=3&rft.spage=B71&rft.pages=B71-&rft.issn=2327-9125&rft.eissn=2327-9125&rft_id=info:doi/10.1364/PRJ.411104&rft_dat=%3Ccrossref%3E10_1364_PRJ_411104%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |