Learning-based phase imaging using a low-bit-depth pattern

Phase imaging always deals with the problem of phase invisibility when capturing objects with existing light sensors. However, there is a demand for multiplane full intensity measurements and iterative propagation process or reliance on reference in most conventional approaches. In this paper, we pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Photonics research (Washington, DC) DC), 2020-10, Vol.8 (10), p.1624
Hauptverfasser: Zhou, Zhenyu, Xia, Jun, Wu, Jun, Chang, Chenliang, Ye, Xi, Li, Shuguang, Du, Bintao, Zhang, Hao, Tong, Guodong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 1624
container_title Photonics research (Washington, DC)
container_volume 8
creator Zhou, Zhenyu
Xia, Jun
Wu, Jun
Chang, Chenliang
Ye, Xi
Li, Shuguang
Du, Bintao
Zhang, Hao
Tong, Guodong
description Phase imaging always deals with the problem of phase invisibility when capturing objects with existing light sensors. However, there is a demand for multiplane full intensity measurements and iterative propagation process or reliance on reference in most conventional approaches. In this paper, we present an end-to-end compressible phase imaging method based on deep neural networks, which can implement phase estimation using only binary measurements. A thin diffuser as a preprocessor is placed in front of the image sensor to implicitly encode the incoming wavefront information into the distortion and local variation of the generated speckles. Through the trained network, the phase profile of the object can be extracted from the discrete grains distributed in the low-bit-depth pattern. Our experiments demonstrate the faithful reconstruction with reasonable quality utilizing a single binary pattern and verify the high redundancy of the information in the intensity measurement for phase recovery. In addition to the advantages of efficiency and simplicity compared to now available imaging methods, our model provides significant compressibility for imaging data and can therefore facilitate the low-cost detection and efficient data transmission.
doi_str_mv 10.1364/PRJ.398583
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1364_PRJ_398583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1364_PRJ_398583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c231t-8e828603feb288bc0ca633d69a961f10af38a452cd9f0c1953906077acb7f6083</originalsourceid><addsrcrecordid>eNpNj8FKAzEQhoMoWGovPkHOQuoks5tNvElRqywooudlNpu0K3W7JCvi25tSD85hvp__MMzH2KWEpURdXL-8Pi3RmtLgCZspVJWwUpWn__I5W6T0AXlsIbHUM3ZTe4pDP2xES8l3fNxm8P6TNrnjX-mwie_236LtJ9H5cdrykabJx-GCnQXaJb_445y939-9rdaifn54XN3WwimUkzDeKKMBg2-VMa0DRxqx05aslkECBTRUlMp1NoCTtkQLGqqKXFsFDQbn7Op418V9StGHZoz5wfjTSGgO4k0Wb47i-Asr1UnW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Learning-based phase imaging using a low-bit-depth pattern</title><source>Optica Publishing Group (OPG)</source><source>EZB Electronic Journals Library</source><creator>Zhou, Zhenyu ; Xia, Jun ; Wu, Jun ; Chang, Chenliang ; Ye, Xi ; Li, Shuguang ; Du, Bintao ; Zhang, Hao ; Tong, Guodong</creator><creatorcontrib>Zhou, Zhenyu ; Xia, Jun ; Wu, Jun ; Chang, Chenliang ; Ye, Xi ; Li, Shuguang ; Du, Bintao ; Zhang, Hao ; Tong, Guodong</creatorcontrib><description>Phase imaging always deals with the problem of phase invisibility when capturing objects with existing light sensors. However, there is a demand for multiplane full intensity measurements and iterative propagation process or reliance on reference in most conventional approaches. In this paper, we present an end-to-end compressible phase imaging method based on deep neural networks, which can implement phase estimation using only binary measurements. A thin diffuser as a preprocessor is placed in front of the image sensor to implicitly encode the incoming wavefront information into the distortion and local variation of the generated speckles. Through the trained network, the phase profile of the object can be extracted from the discrete grains distributed in the low-bit-depth pattern. Our experiments demonstrate the faithful reconstruction with reasonable quality utilizing a single binary pattern and verify the high redundancy of the information in the intensity measurement for phase recovery. In addition to the advantages of efficiency and simplicity compared to now available imaging methods, our model provides significant compressibility for imaging data and can therefore facilitate the low-cost detection and efficient data transmission.</description><identifier>ISSN: 2327-9125</identifier><identifier>EISSN: 2327-9125</identifier><identifier>DOI: 10.1364/PRJ.398583</identifier><language>eng</language><ispartof>Photonics research (Washington, DC), 2020-10, Vol.8 (10), p.1624</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c231t-8e828603feb288bc0ca633d69a961f10af38a452cd9f0c1953906077acb7f6083</citedby><cites>FETCH-LOGICAL-c231t-8e828603feb288bc0ca633d69a961f10af38a452cd9f0c1953906077acb7f6083</cites><orcidid>0000-0002-5506-842X ; 0000-0002-4636-9175</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3245,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhou, Zhenyu</creatorcontrib><creatorcontrib>Xia, Jun</creatorcontrib><creatorcontrib>Wu, Jun</creatorcontrib><creatorcontrib>Chang, Chenliang</creatorcontrib><creatorcontrib>Ye, Xi</creatorcontrib><creatorcontrib>Li, Shuguang</creatorcontrib><creatorcontrib>Du, Bintao</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Tong, Guodong</creatorcontrib><title>Learning-based phase imaging using a low-bit-depth pattern</title><title>Photonics research (Washington, DC)</title><description>Phase imaging always deals with the problem of phase invisibility when capturing objects with existing light sensors. However, there is a demand for multiplane full intensity measurements and iterative propagation process or reliance on reference in most conventional approaches. In this paper, we present an end-to-end compressible phase imaging method based on deep neural networks, which can implement phase estimation using only binary measurements. A thin diffuser as a preprocessor is placed in front of the image sensor to implicitly encode the incoming wavefront information into the distortion and local variation of the generated speckles. Through the trained network, the phase profile of the object can be extracted from the discrete grains distributed in the low-bit-depth pattern. Our experiments demonstrate the faithful reconstruction with reasonable quality utilizing a single binary pattern and verify the high redundancy of the information in the intensity measurement for phase recovery. In addition to the advantages of efficiency and simplicity compared to now available imaging methods, our model provides significant compressibility for imaging data and can therefore facilitate the low-cost detection and efficient data transmission.</description><issn>2327-9125</issn><issn>2327-9125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNj8FKAzEQhoMoWGovPkHOQuoks5tNvElRqywooudlNpu0K3W7JCvi25tSD85hvp__MMzH2KWEpURdXL-8Pi3RmtLgCZspVJWwUpWn__I5W6T0AXlsIbHUM3ZTe4pDP2xES8l3fNxm8P6TNrnjX-mwie_236LtJ9H5cdrykabJx-GCnQXaJb_445y939-9rdaifn54XN3WwimUkzDeKKMBg2-VMa0DRxqx05aslkECBTRUlMp1NoCTtkQLGqqKXFsFDQbn7Op418V9StGHZoz5wfjTSGgO4k0Wb47i-Asr1UnW</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Zhou, Zhenyu</creator><creator>Xia, Jun</creator><creator>Wu, Jun</creator><creator>Chang, Chenliang</creator><creator>Ye, Xi</creator><creator>Li, Shuguang</creator><creator>Du, Bintao</creator><creator>Zhang, Hao</creator><creator>Tong, Guodong</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5506-842X</orcidid><orcidid>https://orcid.org/0000-0002-4636-9175</orcidid></search><sort><creationdate>20201001</creationdate><title>Learning-based phase imaging using a low-bit-depth pattern</title><author>Zhou, Zhenyu ; Xia, Jun ; Wu, Jun ; Chang, Chenliang ; Ye, Xi ; Li, Shuguang ; Du, Bintao ; Zhang, Hao ; Tong, Guodong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c231t-8e828603feb288bc0ca633d69a961f10af38a452cd9f0c1953906077acb7f6083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Zhenyu</creatorcontrib><creatorcontrib>Xia, Jun</creatorcontrib><creatorcontrib>Wu, Jun</creatorcontrib><creatorcontrib>Chang, Chenliang</creatorcontrib><creatorcontrib>Ye, Xi</creatorcontrib><creatorcontrib>Li, Shuguang</creatorcontrib><creatorcontrib>Du, Bintao</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Tong, Guodong</creatorcontrib><collection>CrossRef</collection><jtitle>Photonics research (Washington, DC)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Zhenyu</au><au>Xia, Jun</au><au>Wu, Jun</au><au>Chang, Chenliang</au><au>Ye, Xi</au><au>Li, Shuguang</au><au>Du, Bintao</au><au>Zhang, Hao</au><au>Tong, Guodong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning-based phase imaging using a low-bit-depth pattern</atitle><jtitle>Photonics research (Washington, DC)</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>8</volume><issue>10</issue><spage>1624</spage><pages>1624-</pages><issn>2327-9125</issn><eissn>2327-9125</eissn><abstract>Phase imaging always deals with the problem of phase invisibility when capturing objects with existing light sensors. However, there is a demand for multiplane full intensity measurements and iterative propagation process or reliance on reference in most conventional approaches. In this paper, we present an end-to-end compressible phase imaging method based on deep neural networks, which can implement phase estimation using only binary measurements. A thin diffuser as a preprocessor is placed in front of the image sensor to implicitly encode the incoming wavefront information into the distortion and local variation of the generated speckles. Through the trained network, the phase profile of the object can be extracted from the discrete grains distributed in the low-bit-depth pattern. Our experiments demonstrate the faithful reconstruction with reasonable quality utilizing a single binary pattern and verify the high redundancy of the information in the intensity measurement for phase recovery. In addition to the advantages of efficiency and simplicity compared to now available imaging methods, our model provides significant compressibility for imaging data and can therefore facilitate the low-cost detection and efficient data transmission.</abstract><doi>10.1364/PRJ.398583</doi><orcidid>https://orcid.org/0000-0002-5506-842X</orcidid><orcidid>https://orcid.org/0000-0002-4636-9175</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2327-9125
ispartof Photonics research (Washington, DC), 2020-10, Vol.8 (10), p.1624
issn 2327-9125
2327-9125
language eng
recordid cdi_crossref_primary_10_1364_PRJ_398583
source Optica Publishing Group (OPG); EZB Electronic Journals Library
title Learning-based phase imaging using a low-bit-depth pattern
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A51%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning-based%20phase%20imaging%20using%20a%20low-bit-depth%20pattern&rft.jtitle=Photonics%20research%20(Washington,%20DC)&rft.au=Zhou,%20Zhenyu&rft.date=2020-10-01&rft.volume=8&rft.issue=10&rft.spage=1624&rft.pages=1624-&rft.issn=2327-9125&rft.eissn=2327-9125&rft_id=info:doi/10.1364/PRJ.398583&rft_dat=%3Ccrossref%3E10_1364_PRJ_398583%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true