Low-loss, centimeter-scale plasmonic metasurface for ultrafast optoelectronics

Plasmonics can dramatically improve the radiative properties of fluorescent materials by precisely tailoring the local density of states, but has largely been dismissed for practical optoelectronic applications due to losses and lack of scalability to macroscopic areas. Here, we demonstrate a low-lo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optica 2021-02, Vol.8 (2), p.202
Hauptverfasser: Traverso, Andrew J., Huang, Jiani, Peyronel, Thibault, Yang, Guoce, Tiecke, Tobias G., Mikkelsen, Maiken H.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 202
container_title Optica
container_volume 8
creator Traverso, Andrew J.
Huang, Jiani
Peyronel, Thibault
Yang, Guoce
Tiecke, Tobias G.
Mikkelsen, Maiken H.
description Plasmonics can dramatically improve the radiative properties of fluorescent materials by precisely tailoring the local density of states, but has largely been dismissed for practical optoelectronic applications due to losses and lack of scalability to macroscopic areas. Here, we demonstrate a low-loss plasmonic metasurface that can collect fast-modulated light with a 3 dB bandwidth exceeding 14 GHz and a 120º acceptance angle and convert it to a directional source with, to the best of our knowledge, a record-high overall efficiency of ∼ 30 % . This large-area metasurface composed of fluorescent dye coupled to nanopatch antennas, exhibits a 910-fold increase in the overall fluorescence and a 133-fold emission rate enhancement—values previously only observable for isolated, highly optimized single nanostructures. Critical for future applications ranging from optoelectronics to biosensing, this metasurface was created over macroscopic areas with scalable techniques and the performance was validated over centimeter-scale regions. In particular, we believe this approach shows promise for the burgeoning field of visible/near-infrared wireless communications, where radical new designs and materials are needed for ultrafast, efficient, omnidirectional detectors and incoherent sources.
doi_str_mv 10.1364/OPTICA.400731
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1364_OPTICA_400731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1364_OPTICA_400731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-e88b36b5e3558cc9758e12aac34a22a921f1c6de92b7408c61f930e7accc81c43</originalsourceid><addsrcrecordid>eNpNkE9LxDAUxIMouKx79N4PYNYkL23Toyz-g-J6WM_l9fkClXZbkizit7dLPXiaYRiG4SfErVZbDYW9378fXncPW6tUCfpCrAyAlSaH4vKfvxabGL-UUhqsyiu1Em_1-C37Mca7jPiYuoETBxkJe86mHuMwHjvK5hTjKXgkzvwYslOfAnqMKRunNHLPlMK5GG_Elcc-8uZP1-Lj6fGwe5H1_nm-V0sCo5Jk51oo2pwhzx1RVeaOtUEksGgMVkZ7TcUnV6YtrXJUaF-B4hKJyGmysBZy2aUwfw_smyl0A4afRqvmzKNZeDQLD_gFOaBUmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Low-loss, centimeter-scale plasmonic metasurface for ultrafast optoelectronics</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Traverso, Andrew J. ; Huang, Jiani ; Peyronel, Thibault ; Yang, Guoce ; Tiecke, Tobias G. ; Mikkelsen, Maiken H.</creator><creatorcontrib>Traverso, Andrew J. ; Huang, Jiani ; Peyronel, Thibault ; Yang, Guoce ; Tiecke, Tobias G. ; Mikkelsen, Maiken H.</creatorcontrib><description>Plasmonics can dramatically improve the radiative properties of fluorescent materials by precisely tailoring the local density of states, but has largely been dismissed for practical optoelectronic applications due to losses and lack of scalability to macroscopic areas. Here, we demonstrate a low-loss plasmonic metasurface that can collect fast-modulated light with a 3 dB bandwidth exceeding 14 GHz and a 120º acceptance angle and convert it to a directional source with, to the best of our knowledge, a record-high overall efficiency of ∼ 30 % . This large-area metasurface composed of fluorescent dye coupled to nanopatch antennas, exhibits a 910-fold increase in the overall fluorescence and a 133-fold emission rate enhancement—values previously only observable for isolated, highly optimized single nanostructures. Critical for future applications ranging from optoelectronics to biosensing, this metasurface was created over macroscopic areas with scalable techniques and the performance was validated over centimeter-scale regions. In particular, we believe this approach shows promise for the burgeoning field of visible/near-infrared wireless communications, where radical new designs and materials are needed for ultrafast, efficient, omnidirectional detectors and incoherent sources.</description><identifier>ISSN: 2334-2536</identifier><identifier>EISSN: 2334-2536</identifier><identifier>DOI: 10.1364/OPTICA.400731</identifier><language>eng</language><ispartof>Optica, 2021-02, Vol.8 (2), p.202</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-e88b36b5e3558cc9758e12aac34a22a921f1c6de92b7408c61f930e7accc81c43</citedby><cites>FETCH-LOGICAL-c320t-e88b36b5e3558cc9758e12aac34a22a921f1c6de92b7408c61f930e7accc81c43</cites><orcidid>0000-0002-0487-7585 ; 0000-0002-6566-7776</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Traverso, Andrew J.</creatorcontrib><creatorcontrib>Huang, Jiani</creatorcontrib><creatorcontrib>Peyronel, Thibault</creatorcontrib><creatorcontrib>Yang, Guoce</creatorcontrib><creatorcontrib>Tiecke, Tobias G.</creatorcontrib><creatorcontrib>Mikkelsen, Maiken H.</creatorcontrib><title>Low-loss, centimeter-scale plasmonic metasurface for ultrafast optoelectronics</title><title>Optica</title><description>Plasmonics can dramatically improve the radiative properties of fluorescent materials by precisely tailoring the local density of states, but has largely been dismissed for practical optoelectronic applications due to losses and lack of scalability to macroscopic areas. Here, we demonstrate a low-loss plasmonic metasurface that can collect fast-modulated light with a 3 dB bandwidth exceeding 14 GHz and a 120º acceptance angle and convert it to a directional source with, to the best of our knowledge, a record-high overall efficiency of ∼ 30 % . This large-area metasurface composed of fluorescent dye coupled to nanopatch antennas, exhibits a 910-fold increase in the overall fluorescence and a 133-fold emission rate enhancement—values previously only observable for isolated, highly optimized single nanostructures. Critical for future applications ranging from optoelectronics to biosensing, this metasurface was created over macroscopic areas with scalable techniques and the performance was validated over centimeter-scale regions. In particular, we believe this approach shows promise for the burgeoning field of visible/near-infrared wireless communications, where radical new designs and materials are needed for ultrafast, efficient, omnidirectional detectors and incoherent sources.</description><issn>2334-2536</issn><issn>2334-2536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkE9LxDAUxIMouKx79N4PYNYkL23Toyz-g-J6WM_l9fkClXZbkizit7dLPXiaYRiG4SfErVZbDYW9378fXncPW6tUCfpCrAyAlSaH4vKfvxabGL-UUhqsyiu1Em_1-C37Mca7jPiYuoETBxkJe86mHuMwHjvK5hTjKXgkzvwYslOfAnqMKRunNHLPlMK5GG_Elcc-8uZP1-Lj6fGwe5H1_nm-V0sCo5Jk51oo2pwhzx1RVeaOtUEksGgMVkZ7TcUnV6YtrXJUaF-B4hKJyGmysBZy2aUwfw_smyl0A4afRqvmzKNZeDQLD_gFOaBUmw</recordid><startdate>20210220</startdate><enddate>20210220</enddate><creator>Traverso, Andrew J.</creator><creator>Huang, Jiani</creator><creator>Peyronel, Thibault</creator><creator>Yang, Guoce</creator><creator>Tiecke, Tobias G.</creator><creator>Mikkelsen, Maiken H.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0487-7585</orcidid><orcidid>https://orcid.org/0000-0002-6566-7776</orcidid></search><sort><creationdate>20210220</creationdate><title>Low-loss, centimeter-scale plasmonic metasurface for ultrafast optoelectronics</title><author>Traverso, Andrew J. ; Huang, Jiani ; Peyronel, Thibault ; Yang, Guoce ; Tiecke, Tobias G. ; Mikkelsen, Maiken H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-e88b36b5e3558cc9758e12aac34a22a921f1c6de92b7408c61f930e7accc81c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Traverso, Andrew J.</creatorcontrib><creatorcontrib>Huang, Jiani</creatorcontrib><creatorcontrib>Peyronel, Thibault</creatorcontrib><creatorcontrib>Yang, Guoce</creatorcontrib><creatorcontrib>Tiecke, Tobias G.</creatorcontrib><creatorcontrib>Mikkelsen, Maiken H.</creatorcontrib><collection>CrossRef</collection><jtitle>Optica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Traverso, Andrew J.</au><au>Huang, Jiani</au><au>Peyronel, Thibault</au><au>Yang, Guoce</au><au>Tiecke, Tobias G.</au><au>Mikkelsen, Maiken H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-loss, centimeter-scale plasmonic metasurface for ultrafast optoelectronics</atitle><jtitle>Optica</jtitle><date>2021-02-20</date><risdate>2021</risdate><volume>8</volume><issue>2</issue><spage>202</spage><pages>202-</pages><issn>2334-2536</issn><eissn>2334-2536</eissn><abstract>Plasmonics can dramatically improve the radiative properties of fluorescent materials by precisely tailoring the local density of states, but has largely been dismissed for practical optoelectronic applications due to losses and lack of scalability to macroscopic areas. Here, we demonstrate a low-loss plasmonic metasurface that can collect fast-modulated light with a 3 dB bandwidth exceeding 14 GHz and a 120º acceptance angle and convert it to a directional source with, to the best of our knowledge, a record-high overall efficiency of ∼ 30 % . This large-area metasurface composed of fluorescent dye coupled to nanopatch antennas, exhibits a 910-fold increase in the overall fluorescence and a 133-fold emission rate enhancement—values previously only observable for isolated, highly optimized single nanostructures. Critical for future applications ranging from optoelectronics to biosensing, this metasurface was created over macroscopic areas with scalable techniques and the performance was validated over centimeter-scale regions. In particular, we believe this approach shows promise for the burgeoning field of visible/near-infrared wireless communications, where radical new designs and materials are needed for ultrafast, efficient, omnidirectional detectors and incoherent sources.</abstract><doi>10.1364/OPTICA.400731</doi><orcidid>https://orcid.org/0000-0002-0487-7585</orcidid><orcidid>https://orcid.org/0000-0002-6566-7776</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2334-2536
ispartof Optica, 2021-02, Vol.8 (2), p.202
issn 2334-2536
2334-2536
language eng
recordid cdi_crossref_primary_10_1364_OPTICA_400731
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Low-loss, centimeter-scale plasmonic metasurface for ultrafast optoelectronics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T22%3A51%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-loss,%20centimeter-scale%20plasmonic%20metasurface%20for%20ultrafast%20optoelectronics&rft.jtitle=Optica&rft.au=Traverso,%20Andrew%20J.&rft.date=2021-02-20&rft.volume=8&rft.issue=2&rft.spage=202&rft.pages=202-&rft.issn=2334-2536&rft.eissn=2334-2536&rft_id=info:doi/10.1364/OPTICA.400731&rft_dat=%3Ccrossref%3E10_1364_OPTICA_400731%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true