High-fidelity distribution of triggered polarization-entangled telecom photons via a 36 km intra-city fiber network
Fiber-based distribution of triggered, entangled, single-photon pairs is a key requirement for the future development of terrestrial quantum networks. In this context, semiconductor quantum dots (QDs) are promising candidates for deterministic sources of on-demand polarization-entangled photon pairs...
Gespeichert in:
Veröffentlicht in: | Optica Quantum 2024-08, Vol.2 (4), p.274 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fiber-based distribution of triggered, entangled, single-photon pairs is a key requirement for the future development of terrestrial quantum networks. In this context, semiconductor quantum dots (QDs) are promising candidates for deterministic sources of on-demand polarization-entangled photon pairs. So far, the best QD polarization-entangled-pair sources emit in the near-infrared wavelength regime, where the transmission distance in deployed fibers is limited. Here, to be compatible with existing fiber network infrastructures, bi-directional polarization-conserving quantum frequency conversion (QFC) is employed to convert the QD emission from 780 nm to telecom wavelengths. We show the preservation of polarization entanglement after QFC (fidelity to Bell state F ϕ + , c o n v =0.972±0.003) of the biexciton transition. As a step toward real-world applicability, high entanglement fidelities ( F ϕ + , l o o p =0.945±0.005) after the propagation of one photon of the entangled pair along a 35.8 km field-installed standard single mode fiber link are reported. Furthermore, we successfully demonstrate a second polarization-conserving QFC step back to 780 nm preserving entanglement ( F ϕ + , b a c k =0.903±0.005). This further prepares the way for interfacing quantum light to various quantum memories. |
---|---|
ISSN: | 2837-6714 2837-6714 |
DOI: | 10.1364/OPTICAQ.530838 |