End-to-end algorithm for the automatic detection of the neural canal opening in OCT images based on a multi-task deep learning model

Neural canal opening (NCO) are important landmarks of the retinal pigment epithelium layer in the optic nerve head region. Conventional NCO detection employs multimodal measurements and feature engineering, which is usually suitable for one specific task. In this study, we proposed an end-to-end dee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics continuum 2023-09, Vol.2 (9), p.2055
Hauptverfasser: Lee, Chieh-En, Tu, Jia-Ling, Tsai, Pei-Chia, Ko, Yu-Chieh, Chen, Shih-Jen, Chen, Ying-Shan, Cheng, Chu-Ming, Tien, Chung-Hao
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 2055
container_title Optics continuum
container_volume 2
creator Lee, Chieh-En
Tu, Jia-Ling
Tsai, Pei-Chia
Ko, Yu-Chieh
Chen, Shih-Jen
Chen, Ying-Shan
Cheng, Chu-Ming
Tien, Chung-Hao
description Neural canal opening (NCO) are important landmarks of the retinal pigment epithelium layer in the optic nerve head region. Conventional NCO detection employs multimodal measurements and feature engineering, which is usually suitable for one specific task. In this study, we proposed an end-to-end deep learning scenario for NCO detection based on single-modality features (OCT). The proposed method contains two visual tasks: one is to verify the existence of NCO points as a binary classification, and the other is to locate the NCO points as a coordinate regression. The feature representation of OCT images, extracted by a MobileNetV2 architecture, was evaluated under new testing data, with an average Euclidean distance error of 5.68 ± 4.45 pixels and an average intersection over union of 0.90 ± 0.03. This suggests that data-driven scenarios have the opportunity to provide a universal and efficient solution to various visual tasks from OCT images.
doi_str_mv 10.1364/OPTCON.497631
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1364_OPTCON_497631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1364_OPTCON_497631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c232t-f7b15c4b9680f361514a3b988d43a3ef0f6f7340fb7473046edf4ca553b361963</originalsourceid><addsrcrecordid>eNpNkD9PwzAQxS0EEhV0ZPcXcLFjx05GFJU_UkUYyhw5zrk1JHZluwM7H5zQMrDcO-nuPT39ELpjdMW4FPft27ZpX1eiVpKzC7QolKKEFrS6_Ldfo2VKH5TSolK84PUCfa_9QHIg4Aesx12ILu8nbEPEeQ9YH3OYdHYGD5DBZBc8DvZ08nCMesRG-3mGA3jnd9h53DZb7Ca9g4R7nWDAs0Xj6ThmR7JOn3MSHPAIOp4cUxhgvEVXVo8Jln96g94f19vmmWzap5fmYUNMwYtMrOpZaURfy4paLlnJhOZ9XVWD4JqDpVZaxQW1vRKKUyFhsMLosuT9_F1LfoPIOdfEkFIE2x3i3DV-dYx2vxS7M8XuTJH_AGbsZg0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>End-to-end algorithm for the automatic detection of the neural canal opening in OCT images based on a multi-task deep learning model</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Lee, Chieh-En ; Tu, Jia-Ling ; Tsai, Pei-Chia ; Ko, Yu-Chieh ; Chen, Shih-Jen ; Chen, Ying-Shan ; Cheng, Chu-Ming ; Tien, Chung-Hao</creator><creatorcontrib>Lee, Chieh-En ; Tu, Jia-Ling ; Tsai, Pei-Chia ; Ko, Yu-Chieh ; Chen, Shih-Jen ; Chen, Ying-Shan ; Cheng, Chu-Ming ; Tien, Chung-Hao</creatorcontrib><description>Neural canal opening (NCO) are important landmarks of the retinal pigment epithelium layer in the optic nerve head region. Conventional NCO detection employs multimodal measurements and feature engineering, which is usually suitable for one specific task. In this study, we proposed an end-to-end deep learning scenario for NCO detection based on single-modality features (OCT). The proposed method contains two visual tasks: one is to verify the existence of NCO points as a binary classification, and the other is to locate the NCO points as a coordinate regression. The feature representation of OCT images, extracted by a MobileNetV2 architecture, was evaluated under new testing data, with an average Euclidean distance error of 5.68 ± 4.45 pixels and an average intersection over union of 0.90 ± 0.03. This suggests that data-driven scenarios have the opportunity to provide a universal and efficient solution to various visual tasks from OCT images.</description><identifier>ISSN: 2770-0208</identifier><identifier>EISSN: 2770-0208</identifier><identifier>DOI: 10.1364/OPTCON.497631</identifier><language>eng</language><ispartof>Optics continuum, 2023-09, Vol.2 (9), p.2055</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c232t-f7b15c4b9680f361514a3b988d43a3ef0f6f7340fb7473046edf4ca553b361963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,27928,27929</link.rule.ids></links><search><creatorcontrib>Lee, Chieh-En</creatorcontrib><creatorcontrib>Tu, Jia-Ling</creatorcontrib><creatorcontrib>Tsai, Pei-Chia</creatorcontrib><creatorcontrib>Ko, Yu-Chieh</creatorcontrib><creatorcontrib>Chen, Shih-Jen</creatorcontrib><creatorcontrib>Chen, Ying-Shan</creatorcontrib><creatorcontrib>Cheng, Chu-Ming</creatorcontrib><creatorcontrib>Tien, Chung-Hao</creatorcontrib><title>End-to-end algorithm for the automatic detection of the neural canal opening in OCT images based on a multi-task deep learning model</title><title>Optics continuum</title><description>Neural canal opening (NCO) are important landmarks of the retinal pigment epithelium layer in the optic nerve head region. Conventional NCO detection employs multimodal measurements and feature engineering, which is usually suitable for one specific task. In this study, we proposed an end-to-end deep learning scenario for NCO detection based on single-modality features (OCT). The proposed method contains two visual tasks: one is to verify the existence of NCO points as a binary classification, and the other is to locate the NCO points as a coordinate regression. The feature representation of OCT images, extracted by a MobileNetV2 architecture, was evaluated under new testing data, with an average Euclidean distance error of 5.68 ± 4.45 pixels and an average intersection over union of 0.90 ± 0.03. This suggests that data-driven scenarios have the opportunity to provide a universal and efficient solution to various visual tasks from OCT images.</description><issn>2770-0208</issn><issn>2770-0208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkD9PwzAQxS0EEhV0ZPcXcLFjx05GFJU_UkUYyhw5zrk1JHZluwM7H5zQMrDcO-nuPT39ELpjdMW4FPft27ZpX1eiVpKzC7QolKKEFrS6_Ldfo2VKH5TSolK84PUCfa_9QHIg4Aesx12ILu8nbEPEeQ9YH3OYdHYGD5DBZBc8DvZ08nCMesRG-3mGA3jnd9h53DZb7Ca9g4R7nWDAs0Xj6ThmR7JOn3MSHPAIOp4cUxhgvEVXVo8Jln96g94f19vmmWzap5fmYUNMwYtMrOpZaURfy4paLlnJhOZ9XVWD4JqDpVZaxQW1vRKKUyFhsMLosuT9_F1LfoPIOdfEkFIE2x3i3DV-dYx2vxS7M8XuTJH_AGbsZg0</recordid><startdate>20230915</startdate><enddate>20230915</enddate><creator>Lee, Chieh-En</creator><creator>Tu, Jia-Ling</creator><creator>Tsai, Pei-Chia</creator><creator>Ko, Yu-Chieh</creator><creator>Chen, Shih-Jen</creator><creator>Chen, Ying-Shan</creator><creator>Cheng, Chu-Ming</creator><creator>Tien, Chung-Hao</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230915</creationdate><title>End-to-end algorithm for the automatic detection of the neural canal opening in OCT images based on a multi-task deep learning model</title><author>Lee, Chieh-En ; Tu, Jia-Ling ; Tsai, Pei-Chia ; Ko, Yu-Chieh ; Chen, Shih-Jen ; Chen, Ying-Shan ; Cheng, Chu-Ming ; Tien, Chung-Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c232t-f7b15c4b9680f361514a3b988d43a3ef0f6f7340fb7473046edf4ca553b361963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Chieh-En</creatorcontrib><creatorcontrib>Tu, Jia-Ling</creatorcontrib><creatorcontrib>Tsai, Pei-Chia</creatorcontrib><creatorcontrib>Ko, Yu-Chieh</creatorcontrib><creatorcontrib>Chen, Shih-Jen</creatorcontrib><creatorcontrib>Chen, Ying-Shan</creatorcontrib><creatorcontrib>Cheng, Chu-Ming</creatorcontrib><creatorcontrib>Tien, Chung-Hao</creatorcontrib><collection>CrossRef</collection><jtitle>Optics continuum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Chieh-En</au><au>Tu, Jia-Ling</au><au>Tsai, Pei-Chia</au><au>Ko, Yu-Chieh</au><au>Chen, Shih-Jen</au><au>Chen, Ying-Shan</au><au>Cheng, Chu-Ming</au><au>Tien, Chung-Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>End-to-end algorithm for the automatic detection of the neural canal opening in OCT images based on a multi-task deep learning model</atitle><jtitle>Optics continuum</jtitle><date>2023-09-15</date><risdate>2023</risdate><volume>2</volume><issue>9</issue><spage>2055</spage><pages>2055-</pages><issn>2770-0208</issn><eissn>2770-0208</eissn><abstract>Neural canal opening (NCO) are important landmarks of the retinal pigment epithelium layer in the optic nerve head region. Conventional NCO detection employs multimodal measurements and feature engineering, which is usually suitable for one specific task. In this study, we proposed an end-to-end deep learning scenario for NCO detection based on single-modality features (OCT). The proposed method contains two visual tasks: one is to verify the existence of NCO points as a binary classification, and the other is to locate the NCO points as a coordinate regression. The feature representation of OCT images, extracted by a MobileNetV2 architecture, was evaluated under new testing data, with an average Euclidean distance error of 5.68 ± 4.45 pixels and an average intersection over union of 0.90 ± 0.03. This suggests that data-driven scenarios have the opportunity to provide a universal and efficient solution to various visual tasks from OCT images.</abstract><doi>10.1364/OPTCON.497631</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2770-0208
ispartof Optics continuum, 2023-09, Vol.2 (9), p.2055
issn 2770-0208
2770-0208
language eng
recordid cdi_crossref_primary_10_1364_OPTCON_497631
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
title End-to-end algorithm for the automatic detection of the neural canal opening in OCT images based on a multi-task deep learning model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T00%3A47%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=End-to-end%20algorithm%20for%20the%20automatic%20detection%20of%20the%20neural%20canal%20opening%20in%20OCT%20images%20based%20on%20a%20multi-task%20deep%20learning%20model&rft.jtitle=Optics%20continuum&rft.au=Lee,%20Chieh-En&rft.date=2023-09-15&rft.volume=2&rft.issue=9&rft.spage=2055&rft.pages=2055-&rft.issn=2770-0208&rft.eissn=2770-0208&rft_id=info:doi/10.1364/OPTCON.497631&rft_dat=%3Ccrossref%3E10_1364_OPTCON_497631%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true