End-to-end algorithm for the automatic detection of the neural canal opening in OCT images based on a multi-task deep learning model
Neural canal opening (NCO) are important landmarks of the retinal pigment epithelium layer in the optic nerve head region. Conventional NCO detection employs multimodal measurements and feature engineering, which is usually suitable for one specific task. In this study, we proposed an end-to-end dee...
Gespeichert in:
Veröffentlicht in: | Optics continuum 2023-09, Vol.2 (9), p.2055 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | 2055 |
container_title | Optics continuum |
container_volume | 2 |
creator | Lee, Chieh-En Tu, Jia-Ling Tsai, Pei-Chia Ko, Yu-Chieh Chen, Shih-Jen Chen, Ying-Shan Cheng, Chu-Ming Tien, Chung-Hao |
description | Neural canal opening (NCO) are important landmarks of the retinal pigment epithelium layer in the optic nerve head region. Conventional NCO detection employs multimodal measurements and feature engineering, which is usually suitable for one specific task. In this study, we proposed an end-to-end deep learning scenario for NCO detection based on single-modality features (OCT). The proposed method contains two visual tasks: one is to verify the existence of NCO points as a binary classification, and the other is to locate the NCO points as a coordinate regression. The feature representation of OCT images, extracted by a MobileNetV2 architecture, was evaluated under new testing data, with an average Euclidean distance error of 5.68 ± 4.45 pixels and an average intersection over union of 0.90 ± 0.03. This suggests that data-driven scenarios have the opportunity to provide a universal and efficient solution to various visual tasks from OCT images. |
doi_str_mv | 10.1364/OPTCON.497631 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1364_OPTCON_497631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1364_OPTCON_497631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c232t-f7b15c4b9680f361514a3b988d43a3ef0f6f7340fb7473046edf4ca553b361963</originalsourceid><addsrcrecordid>eNpNkD9PwzAQxS0EEhV0ZPcXcLFjx05GFJU_UkUYyhw5zrk1JHZluwM7H5zQMrDcO-nuPT39ELpjdMW4FPft27ZpX1eiVpKzC7QolKKEFrS6_Ldfo2VKH5TSolK84PUCfa_9QHIg4Aesx12ILu8nbEPEeQ9YH3OYdHYGD5DBZBc8DvZ08nCMesRG-3mGA3jnd9h53DZb7Ca9g4R7nWDAs0Xj6ThmR7JOn3MSHPAIOp4cUxhgvEVXVo8Jln96g94f19vmmWzap5fmYUNMwYtMrOpZaURfy4paLlnJhOZ9XVWD4JqDpVZaxQW1vRKKUyFhsMLosuT9_F1LfoPIOdfEkFIE2x3i3DV-dYx2vxS7M8XuTJH_AGbsZg0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>End-to-end algorithm for the automatic detection of the neural canal opening in OCT images based on a multi-task deep learning model</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Lee, Chieh-En ; Tu, Jia-Ling ; Tsai, Pei-Chia ; Ko, Yu-Chieh ; Chen, Shih-Jen ; Chen, Ying-Shan ; Cheng, Chu-Ming ; Tien, Chung-Hao</creator><creatorcontrib>Lee, Chieh-En ; Tu, Jia-Ling ; Tsai, Pei-Chia ; Ko, Yu-Chieh ; Chen, Shih-Jen ; Chen, Ying-Shan ; Cheng, Chu-Ming ; Tien, Chung-Hao</creatorcontrib><description>Neural canal opening (NCO) are important landmarks of the retinal pigment epithelium layer in the optic nerve head region. Conventional NCO detection employs multimodal measurements and feature engineering, which is usually suitable for one specific task. In this study, we proposed an end-to-end deep learning scenario for NCO detection based on single-modality features (OCT). The proposed method contains two visual tasks: one is to verify the existence of NCO points as a binary classification, and the other is to locate the NCO points as a coordinate regression. The feature representation of OCT images, extracted by a MobileNetV2 architecture, was evaluated under new testing data, with an average Euclidean distance error of 5.68 ± 4.45 pixels and an average intersection over union of 0.90 ± 0.03. This suggests that data-driven scenarios have the opportunity to provide a universal and efficient solution to various visual tasks from OCT images.</description><identifier>ISSN: 2770-0208</identifier><identifier>EISSN: 2770-0208</identifier><identifier>DOI: 10.1364/OPTCON.497631</identifier><language>eng</language><ispartof>Optics continuum, 2023-09, Vol.2 (9), p.2055</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c232t-f7b15c4b9680f361514a3b988d43a3ef0f6f7340fb7473046edf4ca553b361963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,27928,27929</link.rule.ids></links><search><creatorcontrib>Lee, Chieh-En</creatorcontrib><creatorcontrib>Tu, Jia-Ling</creatorcontrib><creatorcontrib>Tsai, Pei-Chia</creatorcontrib><creatorcontrib>Ko, Yu-Chieh</creatorcontrib><creatorcontrib>Chen, Shih-Jen</creatorcontrib><creatorcontrib>Chen, Ying-Shan</creatorcontrib><creatorcontrib>Cheng, Chu-Ming</creatorcontrib><creatorcontrib>Tien, Chung-Hao</creatorcontrib><title>End-to-end algorithm for the automatic detection of the neural canal opening in OCT images based on a multi-task deep learning model</title><title>Optics continuum</title><description>Neural canal opening (NCO) are important landmarks of the retinal pigment epithelium layer in the optic nerve head region. Conventional NCO detection employs multimodal measurements and feature engineering, which is usually suitable for one specific task. In this study, we proposed an end-to-end deep learning scenario for NCO detection based on single-modality features (OCT). The proposed method contains two visual tasks: one is to verify the existence of NCO points as a binary classification, and the other is to locate the NCO points as a coordinate regression. The feature representation of OCT images, extracted by a MobileNetV2 architecture, was evaluated under new testing data, with an average Euclidean distance error of 5.68 ± 4.45 pixels and an average intersection over union of 0.90 ± 0.03. This suggests that data-driven scenarios have the opportunity to provide a universal and efficient solution to various visual tasks from OCT images.</description><issn>2770-0208</issn><issn>2770-0208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkD9PwzAQxS0EEhV0ZPcXcLFjx05GFJU_UkUYyhw5zrk1JHZluwM7H5zQMrDcO-nuPT39ELpjdMW4FPft27ZpX1eiVpKzC7QolKKEFrS6_Ldfo2VKH5TSolK84PUCfa_9QHIg4Aesx12ILu8nbEPEeQ9YH3OYdHYGD5DBZBc8DvZ08nCMesRG-3mGA3jnd9h53DZb7Ca9g4R7nWDAs0Xj6ThmR7JOn3MSHPAIOp4cUxhgvEVXVo8Jln96g94f19vmmWzap5fmYUNMwYtMrOpZaURfy4paLlnJhOZ9XVWD4JqDpVZaxQW1vRKKUyFhsMLosuT9_F1LfoPIOdfEkFIE2x3i3DV-dYx2vxS7M8XuTJH_AGbsZg0</recordid><startdate>20230915</startdate><enddate>20230915</enddate><creator>Lee, Chieh-En</creator><creator>Tu, Jia-Ling</creator><creator>Tsai, Pei-Chia</creator><creator>Ko, Yu-Chieh</creator><creator>Chen, Shih-Jen</creator><creator>Chen, Ying-Shan</creator><creator>Cheng, Chu-Ming</creator><creator>Tien, Chung-Hao</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230915</creationdate><title>End-to-end algorithm for the automatic detection of the neural canal opening in OCT images based on a multi-task deep learning model</title><author>Lee, Chieh-En ; Tu, Jia-Ling ; Tsai, Pei-Chia ; Ko, Yu-Chieh ; Chen, Shih-Jen ; Chen, Ying-Shan ; Cheng, Chu-Ming ; Tien, Chung-Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c232t-f7b15c4b9680f361514a3b988d43a3ef0f6f7340fb7473046edf4ca553b361963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Chieh-En</creatorcontrib><creatorcontrib>Tu, Jia-Ling</creatorcontrib><creatorcontrib>Tsai, Pei-Chia</creatorcontrib><creatorcontrib>Ko, Yu-Chieh</creatorcontrib><creatorcontrib>Chen, Shih-Jen</creatorcontrib><creatorcontrib>Chen, Ying-Shan</creatorcontrib><creatorcontrib>Cheng, Chu-Ming</creatorcontrib><creatorcontrib>Tien, Chung-Hao</creatorcontrib><collection>CrossRef</collection><jtitle>Optics continuum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Chieh-En</au><au>Tu, Jia-Ling</au><au>Tsai, Pei-Chia</au><au>Ko, Yu-Chieh</au><au>Chen, Shih-Jen</au><au>Chen, Ying-Shan</au><au>Cheng, Chu-Ming</au><au>Tien, Chung-Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>End-to-end algorithm for the automatic detection of the neural canal opening in OCT images based on a multi-task deep learning model</atitle><jtitle>Optics continuum</jtitle><date>2023-09-15</date><risdate>2023</risdate><volume>2</volume><issue>9</issue><spage>2055</spage><pages>2055-</pages><issn>2770-0208</issn><eissn>2770-0208</eissn><abstract>Neural canal opening (NCO) are important landmarks of the retinal pigment epithelium layer in the optic nerve head region. Conventional NCO detection employs multimodal measurements and feature engineering, which is usually suitable for one specific task. In this study, we proposed an end-to-end deep learning scenario for NCO detection based on single-modality features (OCT). The proposed method contains two visual tasks: one is to verify the existence of NCO points as a binary classification, and the other is to locate the NCO points as a coordinate regression. The feature representation of OCT images, extracted by a MobileNetV2 architecture, was evaluated under new testing data, with an average Euclidean distance error of 5.68 ± 4.45 pixels and an average intersection over union of 0.90 ± 0.03. This suggests that data-driven scenarios have the opportunity to provide a universal and efficient solution to various visual tasks from OCT images.</abstract><doi>10.1364/OPTCON.497631</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2770-0208 |
ispartof | Optics continuum, 2023-09, Vol.2 (9), p.2055 |
issn | 2770-0208 2770-0208 |
language | eng |
recordid | cdi_crossref_primary_10_1364_OPTCON_497631 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
title | End-to-end algorithm for the automatic detection of the neural canal opening in OCT images based on a multi-task deep learning model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T00%3A47%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=End-to-end%20algorithm%20for%20the%20automatic%20detection%20of%20the%20neural%20canal%20opening%20in%20OCT%20images%20based%20on%20a%20multi-task%20deep%20learning%20model&rft.jtitle=Optics%20continuum&rft.au=Lee,%20Chieh-En&rft.date=2023-09-15&rft.volume=2&rft.issue=9&rft.spage=2055&rft.pages=2055-&rft.issn=2770-0208&rft.eissn=2770-0208&rft_id=info:doi/10.1364/OPTCON.497631&rft_dat=%3Ccrossref%3E10_1364_OPTCON_497631%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |