Numerical simulation and experimental validation of light modulation by laser-ablated ripples on fused silica surfaces
Laser ablation is a commonly employed technique to enhance the damage resistance of fused silica optics due to its non-contact nature and the absence of polishing aids. However, during the ablation process, laser-induced ripples are inevitably formed, posing significant risks by potentially lowering...
Gespeichert in:
Veröffentlicht in: | Optics express 2025-01, Vol.33 (1), p.169 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 169 |
container_title | Optics express |
container_volume | 33 |
creator | Han, Yichi Peng, Xiaocong Wan, Songlin Cao, Zhen Chen, Huan Li, Hanjie Yan, Shuo Wei, Chaoyang Shao, Jianda |
description | Laser ablation is a commonly employed technique to enhance the damage resistance of fused silica optics due to its non-contact nature and the absence of polishing aids. However, during the ablation process, laser-induced ripples are inevitably formed, posing significant risks by potentially lowering the laser-induced damage threshold (LIDT). This study investigates the impact of these laser-ablated ripples on damage resistance using numerical models that account for electromagnetic fields, heat transfer, and solid mechanics. The simulations reveal that the laser-induced ripples on the fused silica surface locally increase light field, temperature, and thermal stress, which in turn reduce both the damage threshold and the optical transmittance. The period and height of these ripples play a critical role in modulating the intensity of light, temperature, and thermal stress within the silica material. Ripples with a period from 0.5 µm to 1 µm and a height of over 500 nm typically significantly intensify light and should be carefully avoided. The accuracy of simulated models is supported by their agreement with damage threshold and optical transmittance results. This research provides insights into how surface topography affects the performance of optical components and offers a theoretical basis for producing fused silica optics with high damage resistance. |
doi_str_mv | 10.1364/OE.544433 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1364_OE_544433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1364_OE_544433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c693-9336bf969583b5b4473523291435585fde052f95174781e9d0b95b24c44a20c13</originalsourceid><addsrcrecordid>eNpNkE9LxDAQxYMouK4e_Aa5euiaNJO2OcpSXWGxl72XJE00kv4haRf32xtZBU_zeL_hDfMQuqdkQ1kBj0294QDA2AVaUSIgA1KVl__0NbqJ8ZMQCqUoV-j4tvQmOC09jq5fvJzdOGA5dNh8TQn0ZpgTO0rvujMbLfbu_WPG_dj97asT9jKakEmVHNPh4KbJm4gTs0tMRnQ-HcFxCVZqE2_RlZU-mrvfuUaH5_qw3WX75uV1-7TPdCFYJhgrlBWF4BVTXAGUjOcsFxQY5xW3nSE8t4LTEsqKGtERJbjKQQPInGjK1ujhHKvDGGMwtp3SSzKcWkran77apm7PfbFvOtZeYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Numerical simulation and experimental validation of light modulation by laser-ablated ripples on fused silica surfaces</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Han, Yichi ; Peng, Xiaocong ; Wan, Songlin ; Cao, Zhen ; Chen, Huan ; Li, Hanjie ; Yan, Shuo ; Wei, Chaoyang ; Shao, Jianda</creator><creatorcontrib>Han, Yichi ; Peng, Xiaocong ; Wan, Songlin ; Cao, Zhen ; Chen, Huan ; Li, Hanjie ; Yan, Shuo ; Wei, Chaoyang ; Shao, Jianda</creatorcontrib><description>Laser ablation is a commonly employed technique to enhance the damage resistance of fused silica optics due to its non-contact nature and the absence of polishing aids. However, during the ablation process, laser-induced ripples are inevitably formed, posing significant risks by potentially lowering the laser-induced damage threshold (LIDT). This study investigates the impact of these laser-ablated ripples on damage resistance using numerical models that account for electromagnetic fields, heat transfer, and solid mechanics. The simulations reveal that the laser-induced ripples on the fused silica surface locally increase light field, temperature, and thermal stress, which in turn reduce both the damage threshold and the optical transmittance. The period and height of these ripples play a critical role in modulating the intensity of light, temperature, and thermal stress within the silica material. Ripples with a period from 0.5 µm to 1 µm and a height of over 500 nm typically significantly intensify light and should be carefully avoided. The accuracy of simulated models is supported by their agreement with damage threshold and optical transmittance results. This research provides insights into how surface topography affects the performance of optical components and offers a theoretical basis for producing fused silica optics with high damage resistance.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.544433</identifier><language>eng</language><ispartof>Optics express, 2025-01, Vol.33 (1), p.169</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c693-9336bf969583b5b4473523291435585fde052f95174781e9d0b95b24c44a20c13</cites><orcidid>0000-0003-3650-7738 ; 0000-0001-9740-2716 ; 0009-0001-0862-1560</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids></links><search><creatorcontrib>Han, Yichi</creatorcontrib><creatorcontrib>Peng, Xiaocong</creatorcontrib><creatorcontrib>Wan, Songlin</creatorcontrib><creatorcontrib>Cao, Zhen</creatorcontrib><creatorcontrib>Chen, Huan</creatorcontrib><creatorcontrib>Li, Hanjie</creatorcontrib><creatorcontrib>Yan, Shuo</creatorcontrib><creatorcontrib>Wei, Chaoyang</creatorcontrib><creatorcontrib>Shao, Jianda</creatorcontrib><title>Numerical simulation and experimental validation of light modulation by laser-ablated ripples on fused silica surfaces</title><title>Optics express</title><description>Laser ablation is a commonly employed technique to enhance the damage resistance of fused silica optics due to its non-contact nature and the absence of polishing aids. However, during the ablation process, laser-induced ripples are inevitably formed, posing significant risks by potentially lowering the laser-induced damage threshold (LIDT). This study investigates the impact of these laser-ablated ripples on damage resistance using numerical models that account for electromagnetic fields, heat transfer, and solid mechanics. The simulations reveal that the laser-induced ripples on the fused silica surface locally increase light field, temperature, and thermal stress, which in turn reduce both the damage threshold and the optical transmittance. The period and height of these ripples play a critical role in modulating the intensity of light, temperature, and thermal stress within the silica material. Ripples with a period from 0.5 µm to 1 µm and a height of over 500 nm typically significantly intensify light and should be carefully avoided. The accuracy of simulated models is supported by their agreement with damage threshold and optical transmittance results. This research provides insights into how surface topography affects the performance of optical components and offers a theoretical basis for producing fused silica optics with high damage resistance.</description><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNpNkE9LxDAQxYMouK4e_Aa5euiaNJO2OcpSXWGxl72XJE00kv4haRf32xtZBU_zeL_hDfMQuqdkQ1kBj0294QDA2AVaUSIgA1KVl__0NbqJ8ZMQCqUoV-j4tvQmOC09jq5fvJzdOGA5dNh8TQn0ZpgTO0rvujMbLfbu_WPG_dj97asT9jKakEmVHNPh4KbJm4gTs0tMRnQ-HcFxCVZqE2_RlZU-mrvfuUaH5_qw3WX75uV1-7TPdCFYJhgrlBWF4BVTXAGUjOcsFxQY5xW3nSE8t4LTEsqKGtERJbjKQQPInGjK1ujhHKvDGGMwtp3SSzKcWkran77apm7PfbFvOtZeYg</recordid><startdate>20250113</startdate><enddate>20250113</enddate><creator>Han, Yichi</creator><creator>Peng, Xiaocong</creator><creator>Wan, Songlin</creator><creator>Cao, Zhen</creator><creator>Chen, Huan</creator><creator>Li, Hanjie</creator><creator>Yan, Shuo</creator><creator>Wei, Chaoyang</creator><creator>Shao, Jianda</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3650-7738</orcidid><orcidid>https://orcid.org/0000-0001-9740-2716</orcidid><orcidid>https://orcid.org/0009-0001-0862-1560</orcidid></search><sort><creationdate>20250113</creationdate><title>Numerical simulation and experimental validation of light modulation by laser-ablated ripples on fused silica surfaces</title><author>Han, Yichi ; Peng, Xiaocong ; Wan, Songlin ; Cao, Zhen ; Chen, Huan ; Li, Hanjie ; Yan, Shuo ; Wei, Chaoyang ; Shao, Jianda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c693-9336bf969583b5b4473523291435585fde052f95174781e9d0b95b24c44a20c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Yichi</creatorcontrib><creatorcontrib>Peng, Xiaocong</creatorcontrib><creatorcontrib>Wan, Songlin</creatorcontrib><creatorcontrib>Cao, Zhen</creatorcontrib><creatorcontrib>Chen, Huan</creatorcontrib><creatorcontrib>Li, Hanjie</creatorcontrib><creatorcontrib>Yan, Shuo</creatorcontrib><creatorcontrib>Wei, Chaoyang</creatorcontrib><creatorcontrib>Shao, Jianda</creatorcontrib><collection>CrossRef</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Yichi</au><au>Peng, Xiaocong</au><au>Wan, Songlin</au><au>Cao, Zhen</au><au>Chen, Huan</au><au>Li, Hanjie</au><au>Yan, Shuo</au><au>Wei, Chaoyang</au><au>Shao, Jianda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation and experimental validation of light modulation by laser-ablated ripples on fused silica surfaces</atitle><jtitle>Optics express</jtitle><date>2025-01-13</date><risdate>2025</risdate><volume>33</volume><issue>1</issue><spage>169</spage><pages>169-</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>Laser ablation is a commonly employed technique to enhance the damage resistance of fused silica optics due to its non-contact nature and the absence of polishing aids. However, during the ablation process, laser-induced ripples are inevitably formed, posing significant risks by potentially lowering the laser-induced damage threshold (LIDT). This study investigates the impact of these laser-ablated ripples on damage resistance using numerical models that account for electromagnetic fields, heat transfer, and solid mechanics. The simulations reveal that the laser-induced ripples on the fused silica surface locally increase light field, temperature, and thermal stress, which in turn reduce both the damage threshold and the optical transmittance. The period and height of these ripples play a critical role in modulating the intensity of light, temperature, and thermal stress within the silica material. Ripples with a period from 0.5 µm to 1 µm and a height of over 500 nm typically significantly intensify light and should be carefully avoided. The accuracy of simulated models is supported by their agreement with damage threshold and optical transmittance results. This research provides insights into how surface topography affects the performance of optical components and offers a theoretical basis for producing fused silica optics with high damage resistance.</abstract><doi>10.1364/OE.544433</doi><orcidid>https://orcid.org/0000-0003-3650-7738</orcidid><orcidid>https://orcid.org/0000-0001-9740-2716</orcidid><orcidid>https://orcid.org/0009-0001-0862-1560</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1094-4087 |
ispartof | Optics express, 2025-01, Vol.33 (1), p.169 |
issn | 1094-4087 1094-4087 |
language | eng |
recordid | cdi_crossref_primary_10_1364_OE_544433 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Numerical simulation and experimental validation of light modulation by laser-ablated ripples on fused silica surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T11%3A32%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20and%20experimental%20validation%20of%20light%20modulation%20by%20laser-ablated%20ripples%20on%20fused%20silica%20surfaces&rft.jtitle=Optics%20express&rft.au=Han,%20Yichi&rft.date=2025-01-13&rft.volume=33&rft.issue=1&rft.spage=169&rft.pages=169-&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.544433&rft_dat=%3Ccrossref%3E10_1364_OE_544433%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |