Numerical simulation and experimental validation of light modulation by laser-ablated ripples on fused silica surfaces

Laser ablation is a commonly employed technique to enhance the damage resistance of fused silica optics due to its non-contact nature and the absence of polishing aids. However, during the ablation process, laser-induced ripples are inevitably formed, posing significant risks by potentially lowering...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2025-01, Vol.33 (1), p.169
Hauptverfasser: Han, Yichi, Peng, Xiaocong, Wan, Songlin, Cao, Zhen, Chen, Huan, Li, Hanjie, Yan, Shuo, Wei, Chaoyang, Shao, Jianda
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 169
container_title Optics express
container_volume 33
creator Han, Yichi
Peng, Xiaocong
Wan, Songlin
Cao, Zhen
Chen, Huan
Li, Hanjie
Yan, Shuo
Wei, Chaoyang
Shao, Jianda
description Laser ablation is a commonly employed technique to enhance the damage resistance of fused silica optics due to its non-contact nature and the absence of polishing aids. However, during the ablation process, laser-induced ripples are inevitably formed, posing significant risks by potentially lowering the laser-induced damage threshold (LIDT). This study investigates the impact of these laser-ablated ripples on damage resistance using numerical models that account for electromagnetic fields, heat transfer, and solid mechanics. The simulations reveal that the laser-induced ripples on the fused silica surface locally increase light field, temperature, and thermal stress, which in turn reduce both the damage threshold and the optical transmittance. The period and height of these ripples play a critical role in modulating the intensity of light, temperature, and thermal stress within the silica material. Ripples with a period from 0.5 µm to 1 µm and a height of over 500 nm typically significantly intensify light and should be carefully avoided. The accuracy of simulated models is supported by their agreement with damage threshold and optical transmittance results. This research provides insights into how surface topography affects the performance of optical components and offers a theoretical basis for producing fused silica optics with high damage resistance.
doi_str_mv 10.1364/OE.544433
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1364_OE_544433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1364_OE_544433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c693-9336bf969583b5b4473523291435585fde052f95174781e9d0b95b24c44a20c13</originalsourceid><addsrcrecordid>eNpNkE9LxDAQxYMouK4e_Aa5euiaNJO2OcpSXWGxl72XJE00kv4haRf32xtZBU_zeL_hDfMQuqdkQ1kBj0294QDA2AVaUSIgA1KVl__0NbqJ8ZMQCqUoV-j4tvQmOC09jq5fvJzdOGA5dNh8TQn0ZpgTO0rvujMbLfbu_WPG_dj97asT9jKakEmVHNPh4KbJm4gTs0tMRnQ-HcFxCVZqE2_RlZU-mrvfuUaH5_qw3WX75uV1-7TPdCFYJhgrlBWF4BVTXAGUjOcsFxQY5xW3nSE8t4LTEsqKGtERJbjKQQPInGjK1ujhHKvDGGMwtp3SSzKcWkran77apm7PfbFvOtZeYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Numerical simulation and experimental validation of light modulation by laser-ablated ripples on fused silica surfaces</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Han, Yichi ; Peng, Xiaocong ; Wan, Songlin ; Cao, Zhen ; Chen, Huan ; Li, Hanjie ; Yan, Shuo ; Wei, Chaoyang ; Shao, Jianda</creator><creatorcontrib>Han, Yichi ; Peng, Xiaocong ; Wan, Songlin ; Cao, Zhen ; Chen, Huan ; Li, Hanjie ; Yan, Shuo ; Wei, Chaoyang ; Shao, Jianda</creatorcontrib><description>Laser ablation is a commonly employed technique to enhance the damage resistance of fused silica optics due to its non-contact nature and the absence of polishing aids. However, during the ablation process, laser-induced ripples are inevitably formed, posing significant risks by potentially lowering the laser-induced damage threshold (LIDT). This study investigates the impact of these laser-ablated ripples on damage resistance using numerical models that account for electromagnetic fields, heat transfer, and solid mechanics. The simulations reveal that the laser-induced ripples on the fused silica surface locally increase light field, temperature, and thermal stress, which in turn reduce both the damage threshold and the optical transmittance. The period and height of these ripples play a critical role in modulating the intensity of light, temperature, and thermal stress within the silica material. Ripples with a period from 0.5 µm to 1 µm and a height of over 500 nm typically significantly intensify light and should be carefully avoided. The accuracy of simulated models is supported by their agreement with damage threshold and optical transmittance results. This research provides insights into how surface topography affects the performance of optical components and offers a theoretical basis for producing fused silica optics with high damage resistance.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.544433</identifier><language>eng</language><ispartof>Optics express, 2025-01, Vol.33 (1), p.169</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c693-9336bf969583b5b4473523291435585fde052f95174781e9d0b95b24c44a20c13</cites><orcidid>0000-0003-3650-7738 ; 0000-0001-9740-2716 ; 0009-0001-0862-1560</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids></links><search><creatorcontrib>Han, Yichi</creatorcontrib><creatorcontrib>Peng, Xiaocong</creatorcontrib><creatorcontrib>Wan, Songlin</creatorcontrib><creatorcontrib>Cao, Zhen</creatorcontrib><creatorcontrib>Chen, Huan</creatorcontrib><creatorcontrib>Li, Hanjie</creatorcontrib><creatorcontrib>Yan, Shuo</creatorcontrib><creatorcontrib>Wei, Chaoyang</creatorcontrib><creatorcontrib>Shao, Jianda</creatorcontrib><title>Numerical simulation and experimental validation of light modulation by laser-ablated ripples on fused silica surfaces</title><title>Optics express</title><description>Laser ablation is a commonly employed technique to enhance the damage resistance of fused silica optics due to its non-contact nature and the absence of polishing aids. However, during the ablation process, laser-induced ripples are inevitably formed, posing significant risks by potentially lowering the laser-induced damage threshold (LIDT). This study investigates the impact of these laser-ablated ripples on damage resistance using numerical models that account for electromagnetic fields, heat transfer, and solid mechanics. The simulations reveal that the laser-induced ripples on the fused silica surface locally increase light field, temperature, and thermal stress, which in turn reduce both the damage threshold and the optical transmittance. The period and height of these ripples play a critical role in modulating the intensity of light, temperature, and thermal stress within the silica material. Ripples with a period from 0.5 µm to 1 µm and a height of over 500 nm typically significantly intensify light and should be carefully avoided. The accuracy of simulated models is supported by their agreement with damage threshold and optical transmittance results. This research provides insights into how surface topography affects the performance of optical components and offers a theoretical basis for producing fused silica optics with high damage resistance.</description><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNpNkE9LxDAQxYMouK4e_Aa5euiaNJO2OcpSXWGxl72XJE00kv4haRf32xtZBU_zeL_hDfMQuqdkQ1kBj0294QDA2AVaUSIgA1KVl__0NbqJ8ZMQCqUoV-j4tvQmOC09jq5fvJzdOGA5dNh8TQn0ZpgTO0rvujMbLfbu_WPG_dj97asT9jKakEmVHNPh4KbJm4gTs0tMRnQ-HcFxCVZqE2_RlZU-mrvfuUaH5_qw3WX75uV1-7TPdCFYJhgrlBWF4BVTXAGUjOcsFxQY5xW3nSE8t4LTEsqKGtERJbjKQQPInGjK1ujhHKvDGGMwtp3SSzKcWkran77apm7PfbFvOtZeYg</recordid><startdate>20250113</startdate><enddate>20250113</enddate><creator>Han, Yichi</creator><creator>Peng, Xiaocong</creator><creator>Wan, Songlin</creator><creator>Cao, Zhen</creator><creator>Chen, Huan</creator><creator>Li, Hanjie</creator><creator>Yan, Shuo</creator><creator>Wei, Chaoyang</creator><creator>Shao, Jianda</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3650-7738</orcidid><orcidid>https://orcid.org/0000-0001-9740-2716</orcidid><orcidid>https://orcid.org/0009-0001-0862-1560</orcidid></search><sort><creationdate>20250113</creationdate><title>Numerical simulation and experimental validation of light modulation by laser-ablated ripples on fused silica surfaces</title><author>Han, Yichi ; Peng, Xiaocong ; Wan, Songlin ; Cao, Zhen ; Chen, Huan ; Li, Hanjie ; Yan, Shuo ; Wei, Chaoyang ; Shao, Jianda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c693-9336bf969583b5b4473523291435585fde052f95174781e9d0b95b24c44a20c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Yichi</creatorcontrib><creatorcontrib>Peng, Xiaocong</creatorcontrib><creatorcontrib>Wan, Songlin</creatorcontrib><creatorcontrib>Cao, Zhen</creatorcontrib><creatorcontrib>Chen, Huan</creatorcontrib><creatorcontrib>Li, Hanjie</creatorcontrib><creatorcontrib>Yan, Shuo</creatorcontrib><creatorcontrib>Wei, Chaoyang</creatorcontrib><creatorcontrib>Shao, Jianda</creatorcontrib><collection>CrossRef</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Yichi</au><au>Peng, Xiaocong</au><au>Wan, Songlin</au><au>Cao, Zhen</au><au>Chen, Huan</au><au>Li, Hanjie</au><au>Yan, Shuo</au><au>Wei, Chaoyang</au><au>Shao, Jianda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation and experimental validation of light modulation by laser-ablated ripples on fused silica surfaces</atitle><jtitle>Optics express</jtitle><date>2025-01-13</date><risdate>2025</risdate><volume>33</volume><issue>1</issue><spage>169</spage><pages>169-</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>Laser ablation is a commonly employed technique to enhance the damage resistance of fused silica optics due to its non-contact nature and the absence of polishing aids. However, during the ablation process, laser-induced ripples are inevitably formed, posing significant risks by potentially lowering the laser-induced damage threshold (LIDT). This study investigates the impact of these laser-ablated ripples on damage resistance using numerical models that account for electromagnetic fields, heat transfer, and solid mechanics. The simulations reveal that the laser-induced ripples on the fused silica surface locally increase light field, temperature, and thermal stress, which in turn reduce both the damage threshold and the optical transmittance. The period and height of these ripples play a critical role in modulating the intensity of light, temperature, and thermal stress within the silica material. Ripples with a period from 0.5 µm to 1 µm and a height of over 500 nm typically significantly intensify light and should be carefully avoided. The accuracy of simulated models is supported by their agreement with damage threshold and optical transmittance results. This research provides insights into how surface topography affects the performance of optical components and offers a theoretical basis for producing fused silica optics with high damage resistance.</abstract><doi>10.1364/OE.544433</doi><orcidid>https://orcid.org/0000-0003-3650-7738</orcidid><orcidid>https://orcid.org/0000-0001-9740-2716</orcidid><orcidid>https://orcid.org/0009-0001-0862-1560</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1094-4087
ispartof Optics express, 2025-01, Vol.33 (1), p.169
issn 1094-4087
1094-4087
language eng
recordid cdi_crossref_primary_10_1364_OE_544433
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Numerical simulation and experimental validation of light modulation by laser-ablated ripples on fused silica surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T11%3A32%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20and%20experimental%20validation%20of%20light%20modulation%20by%20laser-ablated%20ripples%20on%20fused%20silica%20surfaces&rft.jtitle=Optics%20express&rft.au=Han,%20Yichi&rft.date=2025-01-13&rft.volume=33&rft.issue=1&rft.spage=169&rft.pages=169-&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.544433&rft_dat=%3Ccrossref%3E10_1364_OE_544433%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true