CdSe-based quantum dots assisted deep ultraviolet light detection and visualization

To clarify the positive effect of the down-conversion process for ultraviolet (UV) and deep ultraviolet (DUV) light detection and visualization, we choose, synthesize, and characterize a spectrum of direct-bandgap CdSe-based colloidal quantum dot (QD) solvents and color-conversion layers (CCLs) acro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2024-09, Vol.32 (20), p.35015
Hauptverfasser: Xiao, Hua, Liu, Mingxin, Zhang, Jiarui, Ye, Xianglong, Luo, Yunshu, Lin, Yue, Wang, Lei, Sun, Caiming
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 20
container_start_page 35015
container_title Optics express
container_volume 32
creator Xiao, Hua
Liu, Mingxin
Zhang, Jiarui
Ye, Xianglong
Luo, Yunshu
Lin, Yue
Wang, Lei
Sun, Caiming
description To clarify the positive effect of the down-conversion process for ultraviolet (UV) and deep ultraviolet (DUV) light detection and visualization, we choose, synthesize, and characterize a spectrum of direct-bandgap CdSe-based colloidal quantum dot (QD) solvents and color-conversion layers (CCLs) across blue, green, yellow, orange, and red hues. Their optical absorption, emission, and response speeds under various UV and DUV wavelength of 280 nm, 372 nm, and 405 nm are evaluated. The blue QD CCL demonstrated the highest quantum yield up to 0.68. By integrating this blue QD CCL directly onto a silicon-based photodiode, the responded optical power to 280-nm DUV light is significantly enhanced by 27 times; this data decreases slightly to 23 times when using orange QDs, due to the comparatively lower quantum yield. For the optimal result in a communication system, the orange QDs help exhibit the highest response of 520 mV when stimulated with 372-nm UV light, compared with a substantial improvement over the original response of 120 mV. This enhancement makes the orange QDs significantly reduces the BER, especially at data rates below 70 Mb/s, due to the stronger response of the avalanche photodiode (APD) at 600 nm. Furthermore, to demonstrate the potential application of QDs for patterning and visualization, we have also produced CdSe-based QDs through inkjet printing, showcasing their printability, high stability in air, and pure color emission under DUV illumination. These results underscore the significant potential of CdSe-based QDs for full-color anti-counterfeiting solutions and their integration into flexible, printable wearables for a variety of visualization and DUV detection applications.
doi_str_mv 10.1364/OE.537111
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1364_OE_537111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1364_OE_537111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c154t-18ebf9d65491e391ab131b98a3ad704332345e85b8f85219bdeb1b562d7209ac3</originalsourceid><addsrcrecordid>eNpNkL1OwzAURi0EEqUw8AZeGVJ8Yzu2RxSFH6lShsIcXccOGKVJiZ1K8PS0KgPT9-kMZziE3AJbAS_EfV2tJFcAcEYWwIzIBNPq_N-_JFcxfjIGQhm1IJvSbXxmMXpHv2Yc0rylbkyRYowhpgN13u_o3KcJ92HsfaJ9eP9IB5x8m8I4UBwc3Yc4Yx9-8EiuyUWHffQ3f7skb4_Va_mcreunl_JhnbUgRcpAe9sZV0hhwHMDaIGDNRo5OsUE5zkX0mtpdadlDsY6b8HKIncqZwZbviR3J287jTFOvmt2U9ji9N0Aa441mrpqTjX4L3wHUro</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>CdSe-based quantum dots assisted deep ultraviolet light detection and visualization</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Xiao, Hua ; Liu, Mingxin ; Zhang, Jiarui ; Ye, Xianglong ; Luo, Yunshu ; Lin, Yue ; Wang, Lei ; Sun, Caiming</creator><creatorcontrib>Xiao, Hua ; Liu, Mingxin ; Zhang, Jiarui ; Ye, Xianglong ; Luo, Yunshu ; Lin, Yue ; Wang, Lei ; Sun, Caiming</creatorcontrib><description>To clarify the positive effect of the down-conversion process for ultraviolet (UV) and deep ultraviolet (DUV) light detection and visualization, we choose, synthesize, and characterize a spectrum of direct-bandgap CdSe-based colloidal quantum dot (QD) solvents and color-conversion layers (CCLs) across blue, green, yellow, orange, and red hues. Their optical absorption, emission, and response speeds under various UV and DUV wavelength of 280 nm, 372 nm, and 405 nm are evaluated. The blue QD CCL demonstrated the highest quantum yield up to 0.68. By integrating this blue QD CCL directly onto a silicon-based photodiode, the responded optical power to 280-nm DUV light is significantly enhanced by 27 times; this data decreases slightly to 23 times when using orange QDs, due to the comparatively lower quantum yield. For the optimal result in a communication system, the orange QDs help exhibit the highest response of 520 mV when stimulated with 372-nm UV light, compared with a substantial improvement over the original response of 120 mV. This enhancement makes the orange QDs significantly reduces the BER, especially at data rates below 70 Mb/s, due to the stronger response of the avalanche photodiode (APD) at 600 nm. Furthermore, to demonstrate the potential application of QDs for patterning and visualization, we have also produced CdSe-based QDs through inkjet printing, showcasing their printability, high stability in air, and pure color emission under DUV illumination. These results underscore the significant potential of CdSe-based QDs for full-color anti-counterfeiting solutions and their integration into flexible, printable wearables for a variety of visualization and DUV detection applications.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.537111</identifier><language>eng</language><ispartof>Optics express, 2024-09, Vol.32 (20), p.35015</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c154t-18ebf9d65491e391ab131b98a3ad704332345e85b8f85219bdeb1b562d7209ac3</cites><orcidid>0000-0002-5739-2127 ; 0000-0002-1630-1348 ; 0000-0002-0033-9341</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27923,27924</link.rule.ids></links><search><creatorcontrib>Xiao, Hua</creatorcontrib><creatorcontrib>Liu, Mingxin</creatorcontrib><creatorcontrib>Zhang, Jiarui</creatorcontrib><creatorcontrib>Ye, Xianglong</creatorcontrib><creatorcontrib>Luo, Yunshu</creatorcontrib><creatorcontrib>Lin, Yue</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Sun, Caiming</creatorcontrib><title>CdSe-based quantum dots assisted deep ultraviolet light detection and visualization</title><title>Optics express</title><description>To clarify the positive effect of the down-conversion process for ultraviolet (UV) and deep ultraviolet (DUV) light detection and visualization, we choose, synthesize, and characterize a spectrum of direct-bandgap CdSe-based colloidal quantum dot (QD) solvents and color-conversion layers (CCLs) across blue, green, yellow, orange, and red hues. Their optical absorption, emission, and response speeds under various UV and DUV wavelength of 280 nm, 372 nm, and 405 nm are evaluated. The blue QD CCL demonstrated the highest quantum yield up to 0.68. By integrating this blue QD CCL directly onto a silicon-based photodiode, the responded optical power to 280-nm DUV light is significantly enhanced by 27 times; this data decreases slightly to 23 times when using orange QDs, due to the comparatively lower quantum yield. For the optimal result in a communication system, the orange QDs help exhibit the highest response of 520 mV when stimulated with 372-nm UV light, compared with a substantial improvement over the original response of 120 mV. This enhancement makes the orange QDs significantly reduces the BER, especially at data rates below 70 Mb/s, due to the stronger response of the avalanche photodiode (APD) at 600 nm. Furthermore, to demonstrate the potential application of QDs for patterning and visualization, we have also produced CdSe-based QDs through inkjet printing, showcasing their printability, high stability in air, and pure color emission under DUV illumination. These results underscore the significant potential of CdSe-based QDs for full-color anti-counterfeiting solutions and their integration into flexible, printable wearables for a variety of visualization and DUV detection applications.</description><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkL1OwzAURi0EEqUw8AZeGVJ8Yzu2RxSFH6lShsIcXccOGKVJiZ1K8PS0KgPT9-kMZziE3AJbAS_EfV2tJFcAcEYWwIzIBNPq_N-_JFcxfjIGQhm1IJvSbXxmMXpHv2Yc0rylbkyRYowhpgN13u_o3KcJ92HsfaJ9eP9IB5x8m8I4UBwc3Yc4Yx9-8EiuyUWHffQ3f7skb4_Va_mcreunl_JhnbUgRcpAe9sZV0hhwHMDaIGDNRo5OsUE5zkX0mtpdadlDsY6b8HKIncqZwZbviR3J287jTFOvmt2U9ji9N0Aa441mrpqTjX4L3wHUro</recordid><startdate>20240923</startdate><enddate>20240923</enddate><creator>Xiao, Hua</creator><creator>Liu, Mingxin</creator><creator>Zhang, Jiarui</creator><creator>Ye, Xianglong</creator><creator>Luo, Yunshu</creator><creator>Lin, Yue</creator><creator>Wang, Lei</creator><creator>Sun, Caiming</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5739-2127</orcidid><orcidid>https://orcid.org/0000-0002-1630-1348</orcidid><orcidid>https://orcid.org/0000-0002-0033-9341</orcidid></search><sort><creationdate>20240923</creationdate><title>CdSe-based quantum dots assisted deep ultraviolet light detection and visualization</title><author>Xiao, Hua ; Liu, Mingxin ; Zhang, Jiarui ; Ye, Xianglong ; Luo, Yunshu ; Lin, Yue ; Wang, Lei ; Sun, Caiming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c154t-18ebf9d65491e391ab131b98a3ad704332345e85b8f85219bdeb1b562d7209ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Hua</creatorcontrib><creatorcontrib>Liu, Mingxin</creatorcontrib><creatorcontrib>Zhang, Jiarui</creatorcontrib><creatorcontrib>Ye, Xianglong</creatorcontrib><creatorcontrib>Luo, Yunshu</creatorcontrib><creatorcontrib>Lin, Yue</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Sun, Caiming</creatorcontrib><collection>CrossRef</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Hua</au><au>Liu, Mingxin</au><au>Zhang, Jiarui</au><au>Ye, Xianglong</au><au>Luo, Yunshu</au><au>Lin, Yue</au><au>Wang, Lei</au><au>Sun, Caiming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CdSe-based quantum dots assisted deep ultraviolet light detection and visualization</atitle><jtitle>Optics express</jtitle><date>2024-09-23</date><risdate>2024</risdate><volume>32</volume><issue>20</issue><spage>35015</spage><pages>35015-</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>To clarify the positive effect of the down-conversion process for ultraviolet (UV) and deep ultraviolet (DUV) light detection and visualization, we choose, synthesize, and characterize a spectrum of direct-bandgap CdSe-based colloidal quantum dot (QD) solvents and color-conversion layers (CCLs) across blue, green, yellow, orange, and red hues. Their optical absorption, emission, and response speeds under various UV and DUV wavelength of 280 nm, 372 nm, and 405 nm are evaluated. The blue QD CCL demonstrated the highest quantum yield up to 0.68. By integrating this blue QD CCL directly onto a silicon-based photodiode, the responded optical power to 280-nm DUV light is significantly enhanced by 27 times; this data decreases slightly to 23 times when using orange QDs, due to the comparatively lower quantum yield. For the optimal result in a communication system, the orange QDs help exhibit the highest response of 520 mV when stimulated with 372-nm UV light, compared with a substantial improvement over the original response of 120 mV. This enhancement makes the orange QDs significantly reduces the BER, especially at data rates below 70 Mb/s, due to the stronger response of the avalanche photodiode (APD) at 600 nm. Furthermore, to demonstrate the potential application of QDs for patterning and visualization, we have also produced CdSe-based QDs through inkjet printing, showcasing their printability, high stability in air, and pure color emission under DUV illumination. These results underscore the significant potential of CdSe-based QDs for full-color anti-counterfeiting solutions and their integration into flexible, printable wearables for a variety of visualization and DUV detection applications.</abstract><doi>10.1364/OE.537111</doi><orcidid>https://orcid.org/0000-0002-5739-2127</orcidid><orcidid>https://orcid.org/0000-0002-1630-1348</orcidid><orcidid>https://orcid.org/0000-0002-0033-9341</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1094-4087
ispartof Optics express, 2024-09, Vol.32 (20), p.35015
issn 1094-4087
1094-4087
language eng
recordid cdi_crossref_primary_10_1364_OE_537111
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
title CdSe-based quantum dots assisted deep ultraviolet light detection and visualization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A35%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CdSe-based%20quantum%20dots%20assisted%20deep%20ultraviolet%20light%20detection%20and%20visualization&rft.jtitle=Optics%20express&rft.au=Xiao,%20Hua&rft.date=2024-09-23&rft.volume=32&rft.issue=20&rft.spage=35015&rft.pages=35015-&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.537111&rft_dat=%3Ccrossref%3E10_1364_OE_537111%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true