Thermocavitation: a mechanism to pulse fiber lasers

In this paper, we present a novel mechanism for the generation of laser pulses based on the phenomenon of thermocavitation. Thermocavitation bubbles were generated within a glass cuvette filled with copper nitrate dissolved in water, where the tip of an optical fiber was placed very close to the bub...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2021-07, Vol.29 (15), p.23439-23446
Hauptverfasser: Zaca-Moran, R., Amaxal-Cuatetl, C., Zaca-Moran, P., Castillo-Mixcoatl, J., Ramos-Garcia, R., Padilla-Martinez, J. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present a novel mechanism for the generation of laser pulses based on the phenomenon of thermocavitation. Thermocavitation bubbles were generated within a glass cuvette filled with copper nitrate dissolved in water, where the tip of an optical fiber was placed very close to the bubble generation region. Once the bubble is generated, it expands rapidly and the incoming laser light transmitted through the optical fiber is reflected at the vapor-solution interface and reflected back into the fiber, which is coupled to an erbium-doped fiber ring laser. Laser pulses were extracted from the ring cavity and detected by a fast photodetector, which corresponds to a single thermocavitation event, obtaining a pulse repetition rate from 118 Hz to 2 kHz at 1560 nm, with a pulse width ranging from 64 to 57 mu s. The repetition rate can be controlled by adjusting the laser power to induce thermocavitation. To our knowledge, this novel mechanism of laser pulses has not been reported in the literature. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.430319