Experimental probing of turbulence using a continuous spectrum of asymmetric OAM beams

Propagation of a continuous spectrum of orbital angular momentum (OAM) states through a realistic and controlled 3-dimensional turbulent condition has not been studied to date to the authors' knowledge. Using the Higher Order Bessel-gauss Beams Integrated in Time (HOBBIT) system and a 60 meter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2020-01, Vol.28 (2), p.924-935
Hauptverfasser: Watkins, Richard J., Dai, Kunjian, White, Graham, Li, Wenzhe, Miller, J. Keith, Morgan, Kaitlyn S., Johnson, Eric G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Propagation of a continuous spectrum of orbital angular momentum (OAM) states through a realistic and controlled 3-dimensional turbulent condition has not been studied to date to the authors' knowledge. Using the Higher Order Bessel-gauss Beams Integrated in Time (HOBBIT) system and a 60 meter optical path Variable Turbulence Generator (VTG), we demonstrate that by changing the OAM in a continuous scan, a spectrum of OAMs provide an opportunity to take advantage of additional propagation channels within the aperture of the transmitter and optical path to the receiver. Experimental results are provided illustrating the HOBBIT system's ability to position the beam in space and time to exploit eigenchannels in the turbulent medium. This technique can be used to probe the turbulence at time scales much faster than the Greenwood frequency. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.380405