Deep learning for isolated attosecond pulse reconstruction with the all-optical method

The characterization of attosecond pulses is crucial for attosecond metrology. In this work, we investigate the isolated attosecond pulse reconstruction with the all-optical method. The results show that this method can characterize isolated attosecond pulses with a duration shorter than 50 attoseco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Optical Society of America. B, Optical physics Optical physics, 2023-10, Vol.40 (10), p.2536
Hauptverfasser: Meng, Lihui, Liang, Shiqi, He, Lixin, Hu, Jianchang, Sun, Siqi, Lan, Pengfei, Lu, Peixiang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 2536
container_title Journal of the Optical Society of America. B, Optical physics
container_volume 40
creator Meng, Lihui
Liang, Shiqi
He, Lixin
Hu, Jianchang
Sun, Siqi
Lan, Pengfei
Lu, Peixiang
description The characterization of attosecond pulses is crucial for attosecond metrology. In this work, we investigate the isolated attosecond pulse reconstruction with the all-optical method. The results show that this method can characterize isolated attosecond pulses with a duration shorter than 50 attoseconds. Moreover, we develop a deep learning scheme to characterize isolated attosecond pulses. Through supervised learning, the deep neural network learns the mapping from the photon spectrograms to attosecond pulses. It allows complete characterization of the amplitude and phase of isolated attosecond pulses. Compared to the conventional principal component generalized projections algorithm, the reconstruction with our neural network shows superior quality and robustness to noise. Also, the reconstruction computation time is significantly reduced to a few seconds.
doi_str_mv 10.1364/JOSAB.489019
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1364_JOSAB_489019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1364_JOSAB_489019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c192t-7c7af93c64d8dd71aae2b016f07aa63ad4ee9d5491bec9af5fc1bbc89e7123d3</originalsourceid><addsrcrecordid>eNot0MtOwzAUBFALgUQp7PgAfwAufuXhZSlvVeqCim10Y1-ToDSObFeIv4dSVqNZzCwOIdeCL4Qq9e3r5m15t9C14cKckJkoJGd1ofkpmfFKc6ak1OfkIqVPzrnmUs7I-z3iRAeEOPbjB_Uh0j6FATI6CjmHhDaMjk77ISGNh5Jy3Nvch5F-9bmjuUMKw8DClHsLA91h7oK7JGcefidX_zkn28eH7eqZrTdPL6vlmllhZGaVrcAbZUvtaucqAYCy5aL0vAIoFTiNaFyhjWjRGvCFt6JtbW2wElI5NSc3x1sbQ0oRfTPFfgfxuxG8OZA0fyTNkUT9ANBpVv8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Deep learning for isolated attosecond pulse reconstruction with the all-optical method</title><source>Optica Publishing Group Journals</source><creator>Meng, Lihui ; Liang, Shiqi ; He, Lixin ; Hu, Jianchang ; Sun, Siqi ; Lan, Pengfei ; Lu, Peixiang</creator><creatorcontrib>Meng, Lihui ; Liang, Shiqi ; He, Lixin ; Hu, Jianchang ; Sun, Siqi ; Lan, Pengfei ; Lu, Peixiang</creatorcontrib><description>The characterization of attosecond pulses is crucial for attosecond metrology. In this work, we investigate the isolated attosecond pulse reconstruction with the all-optical method. The results show that this method can characterize isolated attosecond pulses with a duration shorter than 50 attoseconds. Moreover, we develop a deep learning scheme to characterize isolated attosecond pulses. Through supervised learning, the deep neural network learns the mapping from the photon spectrograms to attosecond pulses. It allows complete characterization of the amplitude and phase of isolated attosecond pulses. Compared to the conventional principal component generalized projections algorithm, the reconstruction with our neural network shows superior quality and robustness to noise. Also, the reconstruction computation time is significantly reduced to a few seconds.</description><identifier>ISSN: 0740-3224</identifier><identifier>EISSN: 1520-8540</identifier><identifier>DOI: 10.1364/JOSAB.489019</identifier><language>eng</language><ispartof>Journal of the Optical Society of America. B, Optical physics, 2023-10, Vol.40 (10), p.2536</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c192t-7c7af93c64d8dd71aae2b016f07aa63ad4ee9d5491bec9af5fc1bbc89e7123d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3258,27924,27925</link.rule.ids></links><search><creatorcontrib>Meng, Lihui</creatorcontrib><creatorcontrib>Liang, Shiqi</creatorcontrib><creatorcontrib>He, Lixin</creatorcontrib><creatorcontrib>Hu, Jianchang</creatorcontrib><creatorcontrib>Sun, Siqi</creatorcontrib><creatorcontrib>Lan, Pengfei</creatorcontrib><creatorcontrib>Lu, Peixiang</creatorcontrib><title>Deep learning for isolated attosecond pulse reconstruction with the all-optical method</title><title>Journal of the Optical Society of America. B, Optical physics</title><description>The characterization of attosecond pulses is crucial for attosecond metrology. In this work, we investigate the isolated attosecond pulse reconstruction with the all-optical method. The results show that this method can characterize isolated attosecond pulses with a duration shorter than 50 attoseconds. Moreover, we develop a deep learning scheme to characterize isolated attosecond pulses. Through supervised learning, the deep neural network learns the mapping from the photon spectrograms to attosecond pulses. It allows complete characterization of the amplitude and phase of isolated attosecond pulses. Compared to the conventional principal component generalized projections algorithm, the reconstruction with our neural network shows superior quality and robustness to noise. Also, the reconstruction computation time is significantly reduced to a few seconds.</description><issn>0740-3224</issn><issn>1520-8540</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNot0MtOwzAUBFALgUQp7PgAfwAufuXhZSlvVeqCim10Y1-ToDSObFeIv4dSVqNZzCwOIdeCL4Qq9e3r5m15t9C14cKckJkoJGd1ofkpmfFKc6ak1OfkIqVPzrnmUs7I-z3iRAeEOPbjB_Uh0j6FATI6CjmHhDaMjk77ISGNh5Jy3Nvch5F-9bmjuUMKw8DClHsLA91h7oK7JGcefidX_zkn28eH7eqZrTdPL6vlmllhZGaVrcAbZUvtaucqAYCy5aL0vAIoFTiNaFyhjWjRGvCFt6JtbW2wElI5NSc3x1sbQ0oRfTPFfgfxuxG8OZA0fyTNkUT9ANBpVv8</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Meng, Lihui</creator><creator>Liang, Shiqi</creator><creator>He, Lixin</creator><creator>Hu, Jianchang</creator><creator>Sun, Siqi</creator><creator>Lan, Pengfei</creator><creator>Lu, Peixiang</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231001</creationdate><title>Deep learning for isolated attosecond pulse reconstruction with the all-optical method</title><author>Meng, Lihui ; Liang, Shiqi ; He, Lixin ; Hu, Jianchang ; Sun, Siqi ; Lan, Pengfei ; Lu, Peixiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c192t-7c7af93c64d8dd71aae2b016f07aa63ad4ee9d5491bec9af5fc1bbc89e7123d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Lihui</creatorcontrib><creatorcontrib>Liang, Shiqi</creatorcontrib><creatorcontrib>He, Lixin</creatorcontrib><creatorcontrib>Hu, Jianchang</creatorcontrib><creatorcontrib>Sun, Siqi</creatorcontrib><creatorcontrib>Lan, Pengfei</creatorcontrib><creatorcontrib>Lu, Peixiang</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Optical Society of America. B, Optical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Lihui</au><au>Liang, Shiqi</au><au>He, Lixin</au><au>Hu, Jianchang</au><au>Sun, Siqi</au><au>Lan, Pengfei</au><au>Lu, Peixiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning for isolated attosecond pulse reconstruction with the all-optical method</atitle><jtitle>Journal of the Optical Society of America. B, Optical physics</jtitle><date>2023-10-01</date><risdate>2023</risdate><volume>40</volume><issue>10</issue><spage>2536</spage><pages>2536-</pages><issn>0740-3224</issn><eissn>1520-8540</eissn><abstract>The characterization of attosecond pulses is crucial for attosecond metrology. In this work, we investigate the isolated attosecond pulse reconstruction with the all-optical method. The results show that this method can characterize isolated attosecond pulses with a duration shorter than 50 attoseconds. Moreover, we develop a deep learning scheme to characterize isolated attosecond pulses. Through supervised learning, the deep neural network learns the mapping from the photon spectrograms to attosecond pulses. It allows complete characterization of the amplitude and phase of isolated attosecond pulses. Compared to the conventional principal component generalized projections algorithm, the reconstruction with our neural network shows superior quality and robustness to noise. Also, the reconstruction computation time is significantly reduced to a few seconds.</abstract><doi>10.1364/JOSAB.489019</doi></addata></record>
fulltext fulltext
identifier ISSN: 0740-3224
ispartof Journal of the Optical Society of America. B, Optical physics, 2023-10, Vol.40 (10), p.2536
issn 0740-3224
1520-8540
language eng
recordid cdi_crossref_primary_10_1364_JOSAB_489019
source Optica Publishing Group Journals
title Deep learning for isolated attosecond pulse reconstruction with the all-optical method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A04%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20for%20isolated%20attosecond%20pulse%20reconstruction%20with%20the%20all-optical%20method&rft.jtitle=Journal%20of%20the%20Optical%20Society%20of%20America.%20B,%20Optical%20physics&rft.au=Meng,%20Lihui&rft.date=2023-10-01&rft.volume=40&rft.issue=10&rft.spage=2536&rft.pages=2536-&rft.issn=0740-3224&rft.eissn=1520-8540&rft_id=info:doi/10.1364/JOSAB.489019&rft_dat=%3Ccrossref%3E10_1364_JOSAB_489019%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true