Deep learning for isolated attosecond pulse reconstruction with the all-optical method
The characterization of attosecond pulses is crucial for attosecond metrology. In this work, we investigate the isolated attosecond pulse reconstruction with the all-optical method. The results show that this method can characterize isolated attosecond pulses with a duration shorter than 50 attoseco...
Gespeichert in:
Veröffentlicht in: | Journal of the Optical Society of America. B, Optical physics Optical physics, 2023-10, Vol.40 (10), p.2536 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 2536 |
container_title | Journal of the Optical Society of America. B, Optical physics |
container_volume | 40 |
creator | Meng, Lihui Liang, Shiqi He, Lixin Hu, Jianchang Sun, Siqi Lan, Pengfei Lu, Peixiang |
description | The characterization of attosecond pulses is crucial for attosecond metrology. In this work, we investigate the isolated attosecond pulse reconstruction with the all-optical method. The results show that this method can characterize isolated attosecond pulses with a duration shorter than 50 attoseconds. Moreover, we develop a deep learning scheme to characterize isolated attosecond pulses. Through supervised learning, the deep neural network learns the mapping from the photon spectrograms to attosecond pulses. It allows complete characterization of the amplitude and phase of isolated attosecond pulses. Compared to the conventional principal component generalized projections algorithm, the reconstruction with our neural network shows superior quality and robustness to noise. Also, the reconstruction computation time is significantly reduced to a few seconds. |
doi_str_mv | 10.1364/JOSAB.489019 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1364_JOSAB_489019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1364_JOSAB_489019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c192t-7c7af93c64d8dd71aae2b016f07aa63ad4ee9d5491bec9af5fc1bbc89e7123d3</originalsourceid><addsrcrecordid>eNot0MtOwzAUBFALgUQp7PgAfwAufuXhZSlvVeqCim10Y1-ToDSObFeIv4dSVqNZzCwOIdeCL4Qq9e3r5m15t9C14cKckJkoJGd1ofkpmfFKc6ak1OfkIqVPzrnmUs7I-z3iRAeEOPbjB_Uh0j6FATI6CjmHhDaMjk77ISGNh5Jy3Nvch5F-9bmjuUMKw8DClHsLA91h7oK7JGcefidX_zkn28eH7eqZrTdPL6vlmllhZGaVrcAbZUvtaucqAYCy5aL0vAIoFTiNaFyhjWjRGvCFt6JtbW2wElI5NSc3x1sbQ0oRfTPFfgfxuxG8OZA0fyTNkUT9ANBpVv8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Deep learning for isolated attosecond pulse reconstruction with the all-optical method</title><source>Optica Publishing Group Journals</source><creator>Meng, Lihui ; Liang, Shiqi ; He, Lixin ; Hu, Jianchang ; Sun, Siqi ; Lan, Pengfei ; Lu, Peixiang</creator><creatorcontrib>Meng, Lihui ; Liang, Shiqi ; He, Lixin ; Hu, Jianchang ; Sun, Siqi ; Lan, Pengfei ; Lu, Peixiang</creatorcontrib><description>The characterization of attosecond pulses is crucial for attosecond metrology. In this work, we investigate the isolated attosecond pulse reconstruction with the all-optical method. The results show that this method can characterize isolated attosecond pulses with a duration shorter than 50 attoseconds. Moreover, we develop a deep learning scheme to characterize isolated attosecond pulses. Through supervised learning, the deep neural network learns the mapping from the photon spectrograms to attosecond pulses. It allows complete characterization of the amplitude and phase of isolated attosecond pulses. Compared to the conventional principal component generalized projections algorithm, the reconstruction with our neural network shows superior quality and robustness to noise. Also, the reconstruction computation time is significantly reduced to a few seconds.</description><identifier>ISSN: 0740-3224</identifier><identifier>EISSN: 1520-8540</identifier><identifier>DOI: 10.1364/JOSAB.489019</identifier><language>eng</language><ispartof>Journal of the Optical Society of America. B, Optical physics, 2023-10, Vol.40 (10), p.2536</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c192t-7c7af93c64d8dd71aae2b016f07aa63ad4ee9d5491bec9af5fc1bbc89e7123d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3258,27924,27925</link.rule.ids></links><search><creatorcontrib>Meng, Lihui</creatorcontrib><creatorcontrib>Liang, Shiqi</creatorcontrib><creatorcontrib>He, Lixin</creatorcontrib><creatorcontrib>Hu, Jianchang</creatorcontrib><creatorcontrib>Sun, Siqi</creatorcontrib><creatorcontrib>Lan, Pengfei</creatorcontrib><creatorcontrib>Lu, Peixiang</creatorcontrib><title>Deep learning for isolated attosecond pulse reconstruction with the all-optical method</title><title>Journal of the Optical Society of America. B, Optical physics</title><description>The characterization of attosecond pulses is crucial for attosecond metrology. In this work, we investigate the isolated attosecond pulse reconstruction with the all-optical method. The results show that this method can characterize isolated attosecond pulses with a duration shorter than 50 attoseconds. Moreover, we develop a deep learning scheme to characterize isolated attosecond pulses. Through supervised learning, the deep neural network learns the mapping from the photon spectrograms to attosecond pulses. It allows complete characterization of the amplitude and phase of isolated attosecond pulses. Compared to the conventional principal component generalized projections algorithm, the reconstruction with our neural network shows superior quality and robustness to noise. Also, the reconstruction computation time is significantly reduced to a few seconds.</description><issn>0740-3224</issn><issn>1520-8540</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNot0MtOwzAUBFALgUQp7PgAfwAufuXhZSlvVeqCim10Y1-ToDSObFeIv4dSVqNZzCwOIdeCL4Qq9e3r5m15t9C14cKckJkoJGd1ofkpmfFKc6ak1OfkIqVPzrnmUs7I-z3iRAeEOPbjB_Uh0j6FATI6CjmHhDaMjk77ISGNh5Jy3Nvch5F-9bmjuUMKw8DClHsLA91h7oK7JGcefidX_zkn28eH7eqZrTdPL6vlmllhZGaVrcAbZUvtaucqAYCy5aL0vAIoFTiNaFyhjWjRGvCFt6JtbW2wElI5NSc3x1sbQ0oRfTPFfgfxuxG8OZA0fyTNkUT9ANBpVv8</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Meng, Lihui</creator><creator>Liang, Shiqi</creator><creator>He, Lixin</creator><creator>Hu, Jianchang</creator><creator>Sun, Siqi</creator><creator>Lan, Pengfei</creator><creator>Lu, Peixiang</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231001</creationdate><title>Deep learning for isolated attosecond pulse reconstruction with the all-optical method</title><author>Meng, Lihui ; Liang, Shiqi ; He, Lixin ; Hu, Jianchang ; Sun, Siqi ; Lan, Pengfei ; Lu, Peixiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c192t-7c7af93c64d8dd71aae2b016f07aa63ad4ee9d5491bec9af5fc1bbc89e7123d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Lihui</creatorcontrib><creatorcontrib>Liang, Shiqi</creatorcontrib><creatorcontrib>He, Lixin</creatorcontrib><creatorcontrib>Hu, Jianchang</creatorcontrib><creatorcontrib>Sun, Siqi</creatorcontrib><creatorcontrib>Lan, Pengfei</creatorcontrib><creatorcontrib>Lu, Peixiang</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Optical Society of America. B, Optical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Lihui</au><au>Liang, Shiqi</au><au>He, Lixin</au><au>Hu, Jianchang</au><au>Sun, Siqi</au><au>Lan, Pengfei</au><au>Lu, Peixiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning for isolated attosecond pulse reconstruction with the all-optical method</atitle><jtitle>Journal of the Optical Society of America. B, Optical physics</jtitle><date>2023-10-01</date><risdate>2023</risdate><volume>40</volume><issue>10</issue><spage>2536</spage><pages>2536-</pages><issn>0740-3224</issn><eissn>1520-8540</eissn><abstract>The characterization of attosecond pulses is crucial for attosecond metrology. In this work, we investigate the isolated attosecond pulse reconstruction with the all-optical method. The results show that this method can characterize isolated attosecond pulses with a duration shorter than 50 attoseconds. Moreover, we develop a deep learning scheme to characterize isolated attosecond pulses. Through supervised learning, the deep neural network learns the mapping from the photon spectrograms to attosecond pulses. It allows complete characterization of the amplitude and phase of isolated attosecond pulses. Compared to the conventional principal component generalized projections algorithm, the reconstruction with our neural network shows superior quality and robustness to noise. Also, the reconstruction computation time is significantly reduced to a few seconds.</abstract><doi>10.1364/JOSAB.489019</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0740-3224 |
ispartof | Journal of the Optical Society of America. B, Optical physics, 2023-10, Vol.40 (10), p.2536 |
issn | 0740-3224 1520-8540 |
language | eng |
recordid | cdi_crossref_primary_10_1364_JOSAB_489019 |
source | Optica Publishing Group Journals |
title | Deep learning for isolated attosecond pulse reconstruction with the all-optical method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A04%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20for%20isolated%20attosecond%20pulse%20reconstruction%20with%20the%20all-optical%20method&rft.jtitle=Journal%20of%20the%20Optical%20Society%20of%20America.%20B,%20Optical%20physics&rft.au=Meng,%20Lihui&rft.date=2023-10-01&rft.volume=40&rft.issue=10&rft.spage=2536&rft.pages=2536-&rft.issn=0740-3224&rft.eissn=1520-8540&rft_id=info:doi/10.1364/JOSAB.489019&rft_dat=%3Ccrossref%3E10_1364_JOSAB_489019%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |