Optimizing performance for an on-chip stimulated Brillouin scattering-based isolator
Non-reciprocal optical components such as isolators and circulators are crucial for preventing catastrophic backreflection and controlling optical cross talk in photonic systems. While non-reciprocal devices based on Brillouin intermodal transitions have been experimentally demonstrated in chip-scal...
Gespeichert in:
Veröffentlicht in: | Journal of the Optical Society of America. B, Optical physics Optical physics, 2023-03, Vol.40 (3), p.523 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 523 |
container_title | Journal of the Optical Society of America. B, Optical physics |
container_volume | 40 |
creator | Lai, Choon Kong Merklein, Moritz Casas-Bedoya, Alvaro Liu, Yang Madden, Stephen J. Poulton, Christopher G. Steel, Michael J. Eggleton, Benjamin J. |
description | Non-reciprocal optical components such as isolators and circulators are crucial for preventing catastrophic backreflection and controlling optical cross talk in photonic systems. While non-reciprocal devices based on Brillouin intermodal transitions have been experimentally demonstrated in chip-scale platforms, harnessing such interactions has required a suspended waveguide structure, which is challenging to fabricate and is potentially less robust than a non-suspended structure, thereby limiting the design flexibility. In this paper, we numerically investigate the performance of a Brillouin-based isolation scheme in which a dual-pump-driven optoacoustic interaction is used to excite confined acoustic waves in a traditional ridge waveguide. We find that acoustic confinement, and therefore the amount of Brillouin-driven mode conversion, can be enhanced by selecting an appropriate optical mode pair and waveguide geometry of two arsenic-based chalcogenide platforms. Further, we optimize the isolator design in its entirety, including the input couplers, mode filters, the Brillouin-active waveguide as well as the device fabrication tolerances. We predict such a device can achieve 30 dB isolation over a 38 nm bandwidth when 500 mW pump power is used; in the presence of a
±
10
n
m
fabrication-induced width error, such isolation can be maintained over a 5–10 nm bandwidth. |
doi_str_mv | 10.1364/JOSAB.479629 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1364_JOSAB_479629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1364_JOSAB_479629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c235t-ffade60a6a0655b26abf453042bfee386e1926d69c069e0c680849e378d931d33</originalsourceid><addsrcrecordid>eNotkLtOwzAYhS0EEqWw8QB-AFx-XxOPbQUFVCkDZY4cxwajJI7sdICnJ1Cmc6RzGT6EbimsKFfi_qV6XW9WotCK6TO0oJIBKaWAc7SAQgDhjIlLdJXzJwAIYGyBDtU4hT58h-Edjy75mHozWIdng82A40DsRxhxnkvHzkyuxZsUui4ew4CzNdPk0jwljclzFHKcOzFdowtvuuxu_nWJ3h4fDtsnsq92z9v1nljG5US8N61TYJQBJWXDlGm8kBwEa7xzvFSOaqZapS0o7cCqEkqhHS_KVnPacr5Ed6dfm2LOyfl6TKE36aumUP8Sqf-I1Cci_AcaulUp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimizing performance for an on-chip stimulated Brillouin scattering-based isolator</title><source>Optica Publishing Group Journals</source><creator>Lai, Choon Kong ; Merklein, Moritz ; Casas-Bedoya, Alvaro ; Liu, Yang ; Madden, Stephen J. ; Poulton, Christopher G. ; Steel, Michael J. ; Eggleton, Benjamin J.</creator><creatorcontrib>Lai, Choon Kong ; Merklein, Moritz ; Casas-Bedoya, Alvaro ; Liu, Yang ; Madden, Stephen J. ; Poulton, Christopher G. ; Steel, Michael J. ; Eggleton, Benjamin J.</creatorcontrib><description>Non-reciprocal optical components such as isolators and circulators are crucial for preventing catastrophic backreflection and controlling optical cross talk in photonic systems. While non-reciprocal devices based on Brillouin intermodal transitions have been experimentally demonstrated in chip-scale platforms, harnessing such interactions has required a suspended waveguide structure, which is challenging to fabricate and is potentially less robust than a non-suspended structure, thereby limiting the design flexibility. In this paper, we numerically investigate the performance of a Brillouin-based isolation scheme in which a dual-pump-driven optoacoustic interaction is used to excite confined acoustic waves in a traditional ridge waveguide. We find that acoustic confinement, and therefore the amount of Brillouin-driven mode conversion, can be enhanced by selecting an appropriate optical mode pair and waveguide geometry of two arsenic-based chalcogenide platforms. Further, we optimize the isolator design in its entirety, including the input couplers, mode filters, the Brillouin-active waveguide as well as the device fabrication tolerances. We predict such a device can achieve 30 dB isolation over a 38 nm bandwidth when 500 mW pump power is used; in the presence of a
±
10
n
m
fabrication-induced width error, such isolation can be maintained over a 5–10 nm bandwidth.</description><identifier>ISSN: 0740-3224</identifier><identifier>EISSN: 1520-8540</identifier><identifier>DOI: 10.1364/JOSAB.479629</identifier><language>eng</language><ispartof>Journal of the Optical Society of America. B, Optical physics, 2023-03, Vol.40 (3), p.523</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c235t-ffade60a6a0655b26abf453042bfee386e1926d69c069e0c680849e378d931d33</citedby><cites>FETCH-LOGICAL-c235t-ffade60a6a0655b26abf453042bfee386e1926d69c069e0c680849e378d931d33</cites><orcidid>0000-0003-3541-6439 ; 0000-0002-1807-859X ; 0000-0002-2707-3424 ; 0000-0002-0508-1474 ; 0000-0003-4921-9727</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3245,27901,27902</link.rule.ids></links><search><creatorcontrib>Lai, Choon Kong</creatorcontrib><creatorcontrib>Merklein, Moritz</creatorcontrib><creatorcontrib>Casas-Bedoya, Alvaro</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Madden, Stephen J.</creatorcontrib><creatorcontrib>Poulton, Christopher G.</creatorcontrib><creatorcontrib>Steel, Michael J.</creatorcontrib><creatorcontrib>Eggleton, Benjamin J.</creatorcontrib><title>Optimizing performance for an on-chip stimulated Brillouin scattering-based isolator</title><title>Journal of the Optical Society of America. B, Optical physics</title><description>Non-reciprocal optical components such as isolators and circulators are crucial for preventing catastrophic backreflection and controlling optical cross talk in photonic systems. While non-reciprocal devices based on Brillouin intermodal transitions have been experimentally demonstrated in chip-scale platforms, harnessing such interactions has required a suspended waveguide structure, which is challenging to fabricate and is potentially less robust than a non-suspended structure, thereby limiting the design flexibility. In this paper, we numerically investigate the performance of a Brillouin-based isolation scheme in which a dual-pump-driven optoacoustic interaction is used to excite confined acoustic waves in a traditional ridge waveguide. We find that acoustic confinement, and therefore the amount of Brillouin-driven mode conversion, can be enhanced by selecting an appropriate optical mode pair and waveguide geometry of two arsenic-based chalcogenide platforms. Further, we optimize the isolator design in its entirety, including the input couplers, mode filters, the Brillouin-active waveguide as well as the device fabrication tolerances. We predict such a device can achieve 30 dB isolation over a 38 nm bandwidth when 500 mW pump power is used; in the presence of a
±
10
n
m
fabrication-induced width error, such isolation can be maintained over a 5–10 nm bandwidth.</description><issn>0740-3224</issn><issn>1520-8540</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkLtOwzAYhS0EEqWw8QB-AFx-XxOPbQUFVCkDZY4cxwajJI7sdICnJ1Cmc6RzGT6EbimsKFfi_qV6XW9WotCK6TO0oJIBKaWAc7SAQgDhjIlLdJXzJwAIYGyBDtU4hT58h-Edjy75mHozWIdng82A40DsRxhxnkvHzkyuxZsUui4ew4CzNdPk0jwljclzFHKcOzFdowtvuuxu_nWJ3h4fDtsnsq92z9v1nljG5US8N61TYJQBJWXDlGm8kBwEa7xzvFSOaqZapS0o7cCqEkqhHS_KVnPacr5Ed6dfm2LOyfl6TKE36aumUP8Sqf-I1Cci_AcaulUp</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Lai, Choon Kong</creator><creator>Merklein, Moritz</creator><creator>Casas-Bedoya, Alvaro</creator><creator>Liu, Yang</creator><creator>Madden, Stephen J.</creator><creator>Poulton, Christopher G.</creator><creator>Steel, Michael J.</creator><creator>Eggleton, Benjamin J.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3541-6439</orcidid><orcidid>https://orcid.org/0000-0002-1807-859X</orcidid><orcidid>https://orcid.org/0000-0002-2707-3424</orcidid><orcidid>https://orcid.org/0000-0002-0508-1474</orcidid><orcidid>https://orcid.org/0000-0003-4921-9727</orcidid></search><sort><creationdate>20230301</creationdate><title>Optimizing performance for an on-chip stimulated Brillouin scattering-based isolator</title><author>Lai, Choon Kong ; Merklein, Moritz ; Casas-Bedoya, Alvaro ; Liu, Yang ; Madden, Stephen J. ; Poulton, Christopher G. ; Steel, Michael J. ; Eggleton, Benjamin J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c235t-ffade60a6a0655b26abf453042bfee386e1926d69c069e0c680849e378d931d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lai, Choon Kong</creatorcontrib><creatorcontrib>Merklein, Moritz</creatorcontrib><creatorcontrib>Casas-Bedoya, Alvaro</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Madden, Stephen J.</creatorcontrib><creatorcontrib>Poulton, Christopher G.</creatorcontrib><creatorcontrib>Steel, Michael J.</creatorcontrib><creatorcontrib>Eggleton, Benjamin J.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Optical Society of America. B, Optical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lai, Choon Kong</au><au>Merklein, Moritz</au><au>Casas-Bedoya, Alvaro</au><au>Liu, Yang</au><au>Madden, Stephen J.</au><au>Poulton, Christopher G.</au><au>Steel, Michael J.</au><au>Eggleton, Benjamin J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing performance for an on-chip stimulated Brillouin scattering-based isolator</atitle><jtitle>Journal of the Optical Society of America. B, Optical physics</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>40</volume><issue>3</issue><spage>523</spage><pages>523-</pages><issn>0740-3224</issn><eissn>1520-8540</eissn><abstract>Non-reciprocal optical components such as isolators and circulators are crucial for preventing catastrophic backreflection and controlling optical cross talk in photonic systems. While non-reciprocal devices based on Brillouin intermodal transitions have been experimentally demonstrated in chip-scale platforms, harnessing such interactions has required a suspended waveguide structure, which is challenging to fabricate and is potentially less robust than a non-suspended structure, thereby limiting the design flexibility. In this paper, we numerically investigate the performance of a Brillouin-based isolation scheme in which a dual-pump-driven optoacoustic interaction is used to excite confined acoustic waves in a traditional ridge waveguide. We find that acoustic confinement, and therefore the amount of Brillouin-driven mode conversion, can be enhanced by selecting an appropriate optical mode pair and waveguide geometry of two arsenic-based chalcogenide platforms. Further, we optimize the isolator design in its entirety, including the input couplers, mode filters, the Brillouin-active waveguide as well as the device fabrication tolerances. We predict such a device can achieve 30 dB isolation over a 38 nm bandwidth when 500 mW pump power is used; in the presence of a
±
10
n
m
fabrication-induced width error, such isolation can be maintained over a 5–10 nm bandwidth.</abstract><doi>10.1364/JOSAB.479629</doi><orcidid>https://orcid.org/0000-0003-3541-6439</orcidid><orcidid>https://orcid.org/0000-0002-1807-859X</orcidid><orcidid>https://orcid.org/0000-0002-2707-3424</orcidid><orcidid>https://orcid.org/0000-0002-0508-1474</orcidid><orcidid>https://orcid.org/0000-0003-4921-9727</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0740-3224 |
ispartof | Journal of the Optical Society of America. B, Optical physics, 2023-03, Vol.40 (3), p.523 |
issn | 0740-3224 1520-8540 |
language | eng |
recordid | cdi_crossref_primary_10_1364_JOSAB_479629 |
source | Optica Publishing Group Journals |
title | Optimizing performance for an on-chip stimulated Brillouin scattering-based isolator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T22%3A53%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20performance%20for%20an%20on-chip%20stimulated%20Brillouin%20scattering-based%20isolator&rft.jtitle=Journal%20of%20the%20Optical%20Society%20of%20America.%20B,%20Optical%20physics&rft.au=Lai,%20Choon%20Kong&rft.date=2023-03-01&rft.volume=40&rft.issue=3&rft.spage=523&rft.pages=523-&rft.issn=0740-3224&rft.eissn=1520-8540&rft_id=info:doi/10.1364/JOSAB.479629&rft_dat=%3Ccrossref%3E10_1364_JOSAB_479629%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |