Optimizing performance for an on-chip stimulated Brillouin scattering-based isolator

Non-reciprocal optical components such as isolators and circulators are crucial for preventing catastrophic backreflection and controlling optical cross talk in photonic systems. While non-reciprocal devices based on Brillouin intermodal transitions have been experimentally demonstrated in chip-scal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Optical Society of America. B, Optical physics Optical physics, 2023-03, Vol.40 (3), p.523
Hauptverfasser: Lai, Choon Kong, Merklein, Moritz, Casas-Bedoya, Alvaro, Liu, Yang, Madden, Stephen J., Poulton, Christopher G., Steel, Michael J., Eggleton, Benjamin J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Non-reciprocal optical components such as isolators and circulators are crucial for preventing catastrophic backreflection and controlling optical cross talk in photonic systems. While non-reciprocal devices based on Brillouin intermodal transitions have been experimentally demonstrated in chip-scale platforms, harnessing such interactions has required a suspended waveguide structure, which is challenging to fabricate and is potentially less robust than a non-suspended structure, thereby limiting the design flexibility. In this paper, we numerically investigate the performance of a Brillouin-based isolation scheme in which a dual-pump-driven optoacoustic interaction is used to excite confined acoustic waves in a traditional ridge waveguide. We find that acoustic confinement, and therefore the amount of Brillouin-driven mode conversion, can be enhanced by selecting an appropriate optical mode pair and waveguide geometry of two arsenic-based chalcogenide platforms. Further, we optimize the isolator design in its entirety, including the input couplers, mode filters, the Brillouin-active waveguide as well as the device fabrication tolerances. We predict such a device can achieve 30 dB isolation over a 38 nm bandwidth when 500 mW pump power is used; in the presence of a ± 10 n m fabrication-induced width error, such isolation can be maintained over a 5–10 nm bandwidth.
ISSN:0740-3224
1520-8540
DOI:10.1364/JOSAB.479629