Investigating the influence of ITO thin film thickness on the optical Kerr nonlinearity using ultrashort laser pulses

In this paper, we present results from the measurements of the optical Kerr nonlinearity of indium tin oxide (ITO) thin films of different thicknesses using the femtosecond (fs) Z-scan technique. ITO thin films were prepared by radio frequency magnetron sputtering on a glass substrate at room temper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Optical Society of America. B, Optical physics Optical physics, 2022-05, Vol.39 (5), p.1388
Hauptverfasser: Samad, Fatma Abdel, Mahmoud, Alaa, Abdel-Wahab, M. Sh, Tawfik, Wael Z., Zakaria, Rozalina, Soma, Venugopal Rao, Mohamed, Tarek
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present results from the measurements of the optical Kerr nonlinearity of indium tin oxide (ITO) thin films of different thicknesses using the femtosecond (fs) Z-scan technique. ITO thin films were prepared by radio frequency magnetron sputtering on a glass substrate at room temperature. The coated ITO thin films were subsequently characterized by UV–visible absorption spectroscopy, x-ray diffraction, and scanning electron microscopy. Using ∼ 100 f s pulses at 80 MHz repetition rate, the optical Kerr nonlinearity in ITO with different thicknesses was investigated at different excitation wavelengths and incident pulse energies. The optical Kerr nonlinearity was found to be dependent on excitation wavelength, incident power, and ITO thickness, with a maximum value of ∼ 9 × 1 0 − 12 c m 2 / W at a wavelength of 820 nm, power of 1 W, and 170 nm ITO thickness. These results suggest that Kerr nonlinearity in ITO can be tailored by varying the film thickness, which would be ideal for ultrafast all-optical switching in future optoelectronic devices.
ISSN:0740-3224
1520-8540
DOI:10.1364/JOSAB.455414