Modeling of dispersive media in ADI-FDTD method with complex–conjugate pole residue pairs

This work presents an alternating-direction implicit (ADI) finite-difference time-domain (FDTD) scheme for the study of structures that involve materials with arbitrary frequency dispersion. The material dispersion is fitted to the complex–conjugate pole-residue (CCPR) terms model, and a novel, to t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Optical Society of America. B, Optical physics Optical physics, 2022-01, Vol.39 (1), p.273
Hauptverfasser: Prokopidis, Konstantinos P., Zografopoulos, Dimitrios C.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 273
container_title Journal of the Optical Society of America. B, Optical physics
container_volume 39
creator Prokopidis, Konstantinos P.
Zografopoulos, Dimitrios C.
description This work presents an alternating-direction implicit (ADI) finite-difference time-domain (FDTD) scheme for the study of structures that involve materials with arbitrary frequency dispersion. The material dispersion is fitted to the complex–conjugate pole-residue (CCPR) terms model, and a novel, to the best of our knowledge, numerical formulation is presented based on auxiliary differential equations and two-step ADI methodology. Additionally, the proposed technique is combined with the concept of the perfectly matched layer, and a new implicit scheme is introduced for the termination of media with CCPR dispersion in the ADI-FDTD framework. The ADI-FDTD formulation is compared with the explicit FDTD scheme for several benchmark two-dimensional problems in terms of accuracy and efficiency. The suggested algorithm is proven to be robust and capable of simulating applications in different frequency regions, spanning from microwaves to optical frequencies. It can provide a powerful tool for the analysis of nanostructures involving both strongly dispersive and nanosized materials, such as plasmonic metasurfaces, antennas, core–shell nanoparticle systems, light-trapping plasmonic solar cells, surface-enhanced Raman spectroscopy substrates, or nanodevices based on epsilon-near-zero materials.
doi_str_mv 10.1364/JOSAB.441706
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1364_JOSAB_441706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1364_JOSAB_441706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c192t-aba1fcc85599305e5547c9cf431d90c01d0fb9a00c31fb2e42524028aefc90003</originalsourceid><addsrcrecordid>eNotkEtOwzAYhC0EEqWw4wA-ACm_X029LC2FoqIuKCsWkeNH6yqpIzvlseMO3JCTECir0cxiNPMhdElgQNiQXz8sn8Y3A85JDsMj1COCQjYSHI5RD3IOGaOUn6KzlLYAwIHSHnp5DMZWfrfGwWHjU2Nj8q8W19Z4hf0Oj6fzbDZdTbuk3QSD33y7wTrUTWXfvz-_dNht92vVWtyEyuJokzf7zigf0zk6capK9uJf--h5drua3GeL5d18Ml5kmkjaZqpUxGk9EkJKBsIKwXMtteOMGAkaiAFXSgWgGXEltZwK2o0fKeu07I6wPro69OoYUorWFU30tYofBYHiF0zxB6Y4gGE_MmFXHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modeling of dispersive media in ADI-FDTD method with complex–conjugate pole residue pairs</title><source>Optica Publishing Group Journals</source><creator>Prokopidis, Konstantinos P. ; Zografopoulos, Dimitrios C.</creator><creatorcontrib>Prokopidis, Konstantinos P. ; Zografopoulos, Dimitrios C.</creatorcontrib><description>This work presents an alternating-direction implicit (ADI) finite-difference time-domain (FDTD) scheme for the study of structures that involve materials with arbitrary frequency dispersion. The material dispersion is fitted to the complex–conjugate pole-residue (CCPR) terms model, and a novel, to the best of our knowledge, numerical formulation is presented based on auxiliary differential equations and two-step ADI methodology. Additionally, the proposed technique is combined with the concept of the perfectly matched layer, and a new implicit scheme is introduced for the termination of media with CCPR dispersion in the ADI-FDTD framework. The ADI-FDTD formulation is compared with the explicit FDTD scheme for several benchmark two-dimensional problems in terms of accuracy and efficiency. The suggested algorithm is proven to be robust and capable of simulating applications in different frequency regions, spanning from microwaves to optical frequencies. It can provide a powerful tool for the analysis of nanostructures involving both strongly dispersive and nanosized materials, such as plasmonic metasurfaces, antennas, core–shell nanoparticle systems, light-trapping plasmonic solar cells, surface-enhanced Raman spectroscopy substrates, or nanodevices based on epsilon-near-zero materials.</description><identifier>ISSN: 0740-3224</identifier><identifier>EISSN: 1520-8540</identifier><identifier>DOI: 10.1364/JOSAB.441706</identifier><language>eng</language><ispartof>Journal of the Optical Society of America. B, Optical physics, 2022-01, Vol.39 (1), p.273</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c192t-aba1fcc85599305e5547c9cf431d90c01d0fb9a00c31fb2e42524028aefc90003</cites><orcidid>0000-0001-7499-5547 ; 0000-0002-6338-0237</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3258,27924,27925</link.rule.ids></links><search><creatorcontrib>Prokopidis, Konstantinos P.</creatorcontrib><creatorcontrib>Zografopoulos, Dimitrios C.</creatorcontrib><title>Modeling of dispersive media in ADI-FDTD method with complex–conjugate pole residue pairs</title><title>Journal of the Optical Society of America. B, Optical physics</title><description>This work presents an alternating-direction implicit (ADI) finite-difference time-domain (FDTD) scheme for the study of structures that involve materials with arbitrary frequency dispersion. The material dispersion is fitted to the complex–conjugate pole-residue (CCPR) terms model, and a novel, to the best of our knowledge, numerical formulation is presented based on auxiliary differential equations and two-step ADI methodology. Additionally, the proposed technique is combined with the concept of the perfectly matched layer, and a new implicit scheme is introduced for the termination of media with CCPR dispersion in the ADI-FDTD framework. The ADI-FDTD formulation is compared with the explicit FDTD scheme for several benchmark two-dimensional problems in terms of accuracy and efficiency. The suggested algorithm is proven to be robust and capable of simulating applications in different frequency regions, spanning from microwaves to optical frequencies. It can provide a powerful tool for the analysis of nanostructures involving both strongly dispersive and nanosized materials, such as plasmonic metasurfaces, antennas, core–shell nanoparticle systems, light-trapping plasmonic solar cells, surface-enhanced Raman spectroscopy substrates, or nanodevices based on epsilon-near-zero materials.</description><issn>0740-3224</issn><issn>1520-8540</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkEtOwzAYhC0EEqWw4wA-ACm_X029LC2FoqIuKCsWkeNH6yqpIzvlseMO3JCTECir0cxiNPMhdElgQNiQXz8sn8Y3A85JDsMj1COCQjYSHI5RD3IOGaOUn6KzlLYAwIHSHnp5DMZWfrfGwWHjU2Nj8q8W19Z4hf0Oj6fzbDZdTbuk3QSD33y7wTrUTWXfvz-_dNht92vVWtyEyuJokzf7zigf0zk6capK9uJf--h5drua3GeL5d18Ml5kmkjaZqpUxGk9EkJKBsIKwXMtteOMGAkaiAFXSgWgGXEltZwK2o0fKeu07I6wPro69OoYUorWFU30tYofBYHiF0zxB6Y4gGE_MmFXHQ</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Prokopidis, Konstantinos P.</creator><creator>Zografopoulos, Dimitrios C.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7499-5547</orcidid><orcidid>https://orcid.org/0000-0002-6338-0237</orcidid></search><sort><creationdate>20220101</creationdate><title>Modeling of dispersive media in ADI-FDTD method with complex–conjugate pole residue pairs</title><author>Prokopidis, Konstantinos P. ; Zografopoulos, Dimitrios C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c192t-aba1fcc85599305e5547c9cf431d90c01d0fb9a00c31fb2e42524028aefc90003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prokopidis, Konstantinos P.</creatorcontrib><creatorcontrib>Zografopoulos, Dimitrios C.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Optical Society of America. B, Optical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prokopidis, Konstantinos P.</au><au>Zografopoulos, Dimitrios C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of dispersive media in ADI-FDTD method with complex–conjugate pole residue pairs</atitle><jtitle>Journal of the Optical Society of America. B, Optical physics</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>39</volume><issue>1</issue><spage>273</spage><pages>273-</pages><issn>0740-3224</issn><eissn>1520-8540</eissn><abstract>This work presents an alternating-direction implicit (ADI) finite-difference time-domain (FDTD) scheme for the study of structures that involve materials with arbitrary frequency dispersion. The material dispersion is fitted to the complex–conjugate pole-residue (CCPR) terms model, and a novel, to the best of our knowledge, numerical formulation is presented based on auxiliary differential equations and two-step ADI methodology. Additionally, the proposed technique is combined with the concept of the perfectly matched layer, and a new implicit scheme is introduced for the termination of media with CCPR dispersion in the ADI-FDTD framework. The ADI-FDTD formulation is compared with the explicit FDTD scheme for several benchmark two-dimensional problems in terms of accuracy and efficiency. The suggested algorithm is proven to be robust and capable of simulating applications in different frequency regions, spanning from microwaves to optical frequencies. It can provide a powerful tool for the analysis of nanostructures involving both strongly dispersive and nanosized materials, such as plasmonic metasurfaces, antennas, core–shell nanoparticle systems, light-trapping plasmonic solar cells, surface-enhanced Raman spectroscopy substrates, or nanodevices based on epsilon-near-zero materials.</abstract><doi>10.1364/JOSAB.441706</doi><orcidid>https://orcid.org/0000-0001-7499-5547</orcidid><orcidid>https://orcid.org/0000-0002-6338-0237</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0740-3224
ispartof Journal of the Optical Society of America. B, Optical physics, 2022-01, Vol.39 (1), p.273
issn 0740-3224
1520-8540
language eng
recordid cdi_crossref_primary_10_1364_JOSAB_441706
source Optica Publishing Group Journals
title Modeling of dispersive media in ADI-FDTD method with complex–conjugate pole residue pairs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A52%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20dispersive%20media%20in%20ADI-FDTD%20method%20with%20complex%E2%80%93conjugate%20pole%20residue%20pairs&rft.jtitle=Journal%20of%20the%20Optical%20Society%20of%20America.%20B,%20Optical%20physics&rft.au=Prokopidis,%20Konstantinos%20P.&rft.date=2022-01-01&rft.volume=39&rft.issue=1&rft.spage=273&rft.pages=273-&rft.issn=0740-3224&rft.eissn=1520-8540&rft_id=info:doi/10.1364/JOSAB.441706&rft_dat=%3Ccrossref%3E10_1364_JOSAB_441706%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true