Thermal blooming compensation instabilities
A general model is developed for the time-dependent growth of small perturbations in thermally bloomed beams with and without correction. Intensity and phase everywhere along the path of an intense forward beam and a weak backward beam are determined from the initial beam and path conditions by five...
Gespeichert in:
Veröffentlicht in: | J. Opt. Soc. Am. A; (United States) 1989-07, Vol.6 (7), p.1038 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | 1038 |
container_title | J. Opt. Soc. Am. A; (United States) |
container_volume | 6 |
creator | Karr, T. J. |
description | A general model is developed for the time-dependent growth of small perturbations in thermally bloomed beams with and without correction. Intensity and phase everywhere along the path of an intense forward beam and a weak backward beam are determined from the initial beam and path conditions by five time-dependent Green functions. The Green functions are exact solutions of the combined linearized blooming and turbulence problems and are given in closed form for an arbitrary path. Any correction method is a boundary condition connecting the forward and backward fields. Time-dependent instabilities correspond to singularities in the appropriate combination of Green functions. Perfect field conjugation gives perfect correction and is stable at all spatial frequencies. Perfect phase-reversal correction is unstable at all spatial frequencies. The instability growth rate is proportional to absorbed irradiance, and the total gain in a convection clearing time is proportional to the dimensionless blooming number. High gain is predicted in moderate blooming. Convection shear reduces the gain for irradiances with an instability growth rate much smaller than the shear rate and suppresses the gain for irradiances with a Rayleigh-range optical-path-difference growth rate much smaller than the shear rate. |
doi_str_mv | 10.1364/JOSAA.6.001038 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1364_JOSAA_6_001038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1364_JOSAA_6_001038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-be5076c3f71a1910bb3d67f81a7a0cde082d6ee05e7aa48d01375c732474804e3</originalsourceid><addsrcrecordid>eNotkDtPwzAURi0EEqWwMkesKOE6fmaMKp6q1IEyW45zQ40Su4q98O8phOn7hqMzHEJuKVSUSf7wtntv20pWABSYPiMrKmootWD1-emD5qUSdXNJrlL6AgAutVqR-_0B58mORTfGOPnwWbg4HTEkm30MhQ8p286PPntM1-RisGPCm_9dk4-nx_3mpdzunl837bZ0dSNy2aEAJR0bFLW0odB1rJdq0NQqC65H0HUvEUGgspbrHihTwilWc8U1cGRrcrd4Y8reJOczuoOLIaDLRjRUKMlOULVAbo4pzTiY4-wnO38bCua3h_nrYaRZerAfalJSVg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermal blooming compensation instabilities</title><source>Optica Publishing Group Journals</source><creator>Karr, T. J.</creator><creatorcontrib>Karr, T. J. ; Lawrence Livermore National Laboratory, Livermore, California 94550(US)</creatorcontrib><description>A general model is developed for the time-dependent growth of small perturbations in thermally bloomed beams with and without correction. Intensity and phase everywhere along the path of an intense forward beam and a weak backward beam are determined from the initial beam and path conditions by five time-dependent Green functions. The Green functions are exact solutions of the combined linearized blooming and turbulence problems and are given in closed form for an arbitrary path. Any correction method is a boundary condition connecting the forward and backward fields. Time-dependent instabilities correspond to singularities in the appropriate combination of Green functions. Perfect field conjugation gives perfect correction and is stable at all spatial frequencies. Perfect phase-reversal correction is unstable at all spatial frequencies. The instability growth rate is proportional to absorbed irradiance, and the total gain in a convection clearing time is proportional to the dimensionless blooming number. High gain is predicted in moderate blooming. Convection shear reduces the gain for irradiances with an instability growth rate much smaller than the shear rate and suppresses the gain for irradiances with a Rayleigh-range optical-path-difference growth rate much smaller than the shear rate.</description><identifier>ISSN: 1084-7529</identifier><identifier>EISSN: 1520-8532</identifier><identifier>DOI: 10.1364/JOSAA.6.001038</identifier><language>eng</language><publisher>United States</publisher><subject>420300 - Engineering- Lasers- (-1989) ; BEAMS ; CORRECTIONS ; ELECTROMAGNETIC RADIATION ; ENGINEERING ; FLUCTUATIONS ; FLUID MECHANICS ; HYDRODYNAMICS ; INSTABILITY ; INSTABILITY GROWTH RATES ; LASER RADIATION ; LASERS ; LIGHT TRANSMISSION ; MECHANICS ; NONLINEAR OPTICS ; OPTICS ; PHOTON BEAMS ; RADIATIONS ; TEMPERATURE EFFECTS ; VARIATIONS ; WAVE PROPAGATION</subject><ispartof>J. Opt. Soc. Am. A; (United States), 1989-07, Vol.6 (7), p.1038</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-be5076c3f71a1910bb3d67f81a7a0cde082d6ee05e7aa48d01375c732474804e3</citedby><cites>FETCH-LOGICAL-c295t-be5076c3f71a1910bb3d67f81a7a0cde082d6ee05e7aa48d01375c732474804e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,886,3259,27929,27930</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/5915763$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Karr, T. J.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory, Livermore, California 94550(US)</creatorcontrib><title>Thermal blooming compensation instabilities</title><title>J. Opt. Soc. Am. A; (United States)</title><description>A general model is developed for the time-dependent growth of small perturbations in thermally bloomed beams with and without correction. Intensity and phase everywhere along the path of an intense forward beam and a weak backward beam are determined from the initial beam and path conditions by five time-dependent Green functions. The Green functions are exact solutions of the combined linearized blooming and turbulence problems and are given in closed form for an arbitrary path. Any correction method is a boundary condition connecting the forward and backward fields. Time-dependent instabilities correspond to singularities in the appropriate combination of Green functions. Perfect field conjugation gives perfect correction and is stable at all spatial frequencies. Perfect phase-reversal correction is unstable at all spatial frequencies. The instability growth rate is proportional to absorbed irradiance, and the total gain in a convection clearing time is proportional to the dimensionless blooming number. High gain is predicted in moderate blooming. Convection shear reduces the gain for irradiances with an instability growth rate much smaller than the shear rate and suppresses the gain for irradiances with a Rayleigh-range optical-path-difference growth rate much smaller than the shear rate.</description><subject>420300 - Engineering- Lasers- (-1989)</subject><subject>BEAMS</subject><subject>CORRECTIONS</subject><subject>ELECTROMAGNETIC RADIATION</subject><subject>ENGINEERING</subject><subject>FLUCTUATIONS</subject><subject>FLUID MECHANICS</subject><subject>HYDRODYNAMICS</subject><subject>INSTABILITY</subject><subject>INSTABILITY GROWTH RATES</subject><subject>LASER RADIATION</subject><subject>LASERS</subject><subject>LIGHT TRANSMISSION</subject><subject>MECHANICS</subject><subject>NONLINEAR OPTICS</subject><subject>OPTICS</subject><subject>PHOTON BEAMS</subject><subject>RADIATIONS</subject><subject>TEMPERATURE EFFECTS</subject><subject>VARIATIONS</subject><subject>WAVE PROPAGATION</subject><issn>1084-7529</issn><issn>1520-8532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNotkDtPwzAURi0EEqWwMkesKOE6fmaMKp6q1IEyW45zQ40Su4q98O8phOn7hqMzHEJuKVSUSf7wtntv20pWABSYPiMrKmootWD1-emD5qUSdXNJrlL6AgAutVqR-_0B58mORTfGOPnwWbg4HTEkm30MhQ8p286PPntM1-RisGPCm_9dk4-nx_3mpdzunl837bZ0dSNy2aEAJR0bFLW0odB1rJdq0NQqC65H0HUvEUGgspbrHihTwilWc8U1cGRrcrd4Y8reJOczuoOLIaDLRjRUKMlOULVAbo4pzTiY4-wnO38bCua3h_nrYaRZerAfalJSVg</recordid><startdate>19890701</startdate><enddate>19890701</enddate><creator>Karr, T. J.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19890701</creationdate><title>Thermal blooming compensation instabilities</title><author>Karr, T. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-be5076c3f71a1910bb3d67f81a7a0cde082d6ee05e7aa48d01375c732474804e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>420300 - Engineering- Lasers- (-1989)</topic><topic>BEAMS</topic><topic>CORRECTIONS</topic><topic>ELECTROMAGNETIC RADIATION</topic><topic>ENGINEERING</topic><topic>FLUCTUATIONS</topic><topic>FLUID MECHANICS</topic><topic>HYDRODYNAMICS</topic><topic>INSTABILITY</topic><topic>INSTABILITY GROWTH RATES</topic><topic>LASER RADIATION</topic><topic>LASERS</topic><topic>LIGHT TRANSMISSION</topic><topic>MECHANICS</topic><topic>NONLINEAR OPTICS</topic><topic>OPTICS</topic><topic>PHOTON BEAMS</topic><topic>RADIATIONS</topic><topic>TEMPERATURE EFFECTS</topic><topic>VARIATIONS</topic><topic>WAVE PROPAGATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karr, T. J.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory, Livermore, California 94550(US)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>J. Opt. Soc. Am. A; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karr, T. J.</au><aucorp>Lawrence Livermore National Laboratory, Livermore, California 94550(US)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal blooming compensation instabilities</atitle><jtitle>J. Opt. Soc. Am. A; (United States)</jtitle><date>1989-07-01</date><risdate>1989</risdate><volume>6</volume><issue>7</issue><spage>1038</spage><pages>1038-</pages><issn>1084-7529</issn><eissn>1520-8532</eissn><abstract>A general model is developed for the time-dependent growth of small perturbations in thermally bloomed beams with and without correction. Intensity and phase everywhere along the path of an intense forward beam and a weak backward beam are determined from the initial beam and path conditions by five time-dependent Green functions. The Green functions are exact solutions of the combined linearized blooming and turbulence problems and are given in closed form for an arbitrary path. Any correction method is a boundary condition connecting the forward and backward fields. Time-dependent instabilities correspond to singularities in the appropriate combination of Green functions. Perfect field conjugation gives perfect correction and is stable at all spatial frequencies. Perfect phase-reversal correction is unstable at all spatial frequencies. The instability growth rate is proportional to absorbed irradiance, and the total gain in a convection clearing time is proportional to the dimensionless blooming number. High gain is predicted in moderate blooming. Convection shear reduces the gain for irradiances with an instability growth rate much smaller than the shear rate and suppresses the gain for irradiances with a Rayleigh-range optical-path-difference growth rate much smaller than the shear rate.</abstract><cop>United States</cop><doi>10.1364/JOSAA.6.001038</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1084-7529 |
ispartof | J. Opt. Soc. Am. A; (United States), 1989-07, Vol.6 (7), p.1038 |
issn | 1084-7529 1520-8532 |
language | eng |
recordid | cdi_crossref_primary_10_1364_JOSAA_6_001038 |
source | Optica Publishing Group Journals |
subjects | 420300 - Engineering- Lasers- (-1989) BEAMS CORRECTIONS ELECTROMAGNETIC RADIATION ENGINEERING FLUCTUATIONS FLUID MECHANICS HYDRODYNAMICS INSTABILITY INSTABILITY GROWTH RATES LASER RADIATION LASERS LIGHT TRANSMISSION MECHANICS NONLINEAR OPTICS OPTICS PHOTON BEAMS RADIATIONS TEMPERATURE EFFECTS VARIATIONS WAVE PROPAGATION |
title | Thermal blooming compensation instabilities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T03%3A28%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20blooming%20compensation%20instabilities&rft.jtitle=J.%20Opt.%20Soc.%20Am.%20A;%20(United%20States)&rft.au=Karr,%20T.%20J.&rft.aucorp=Lawrence%20Livermore%20National%20Laboratory,%20Livermore,%20California%2094550(US)&rft.date=1989-07-01&rft.volume=6&rft.issue=7&rft.spage=1038&rft.pages=1038-&rft.issn=1084-7529&rft.eissn=1520-8532&rft_id=info:doi/10.1364/JOSAA.6.001038&rft_dat=%3Ccrossref_osti_%3E10_1364_JOSAA_6_001038%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |