Thermal blooming compensation instabilities

A general model is developed for the time-dependent growth of small perturbations in thermally bloomed beams with and without correction. Intensity and phase everywhere along the path of an intense forward beam and a weak backward beam are determined from the initial beam and path conditions by five...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J. Opt. Soc. Am. A; (United States) 1989-07, Vol.6 (7), p.1038
1. Verfasser: Karr, T. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 1038
container_title J. Opt. Soc. Am. A; (United States)
container_volume 6
creator Karr, T. J.
description A general model is developed for the time-dependent growth of small perturbations in thermally bloomed beams with and without correction. Intensity and phase everywhere along the path of an intense forward beam and a weak backward beam are determined from the initial beam and path conditions by five time-dependent Green functions. The Green functions are exact solutions of the combined linearized blooming and turbulence problems and are given in closed form for an arbitrary path. Any correction method is a boundary condition connecting the forward and backward fields. Time-dependent instabilities correspond to singularities in the appropriate combination of Green functions. Perfect field conjugation gives perfect correction and is stable at all spatial frequencies. Perfect phase-reversal correction is unstable at all spatial frequencies. The instability growth rate is proportional to absorbed irradiance, and the total gain in a convection clearing time is proportional to the dimensionless blooming number. High gain is predicted in moderate blooming. Convection shear reduces the gain for irradiances with an instability growth rate much smaller than the shear rate and suppresses the gain for irradiances with a Rayleigh-range optical-path-difference growth rate much smaller than the shear rate.
doi_str_mv 10.1364/JOSAA.6.001038
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1364_JOSAA_6_001038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1364_JOSAA_6_001038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-be5076c3f71a1910bb3d67f81a7a0cde082d6ee05e7aa48d01375c732474804e3</originalsourceid><addsrcrecordid>eNotkDtPwzAURi0EEqWwMkesKOE6fmaMKp6q1IEyW45zQ40Su4q98O8phOn7hqMzHEJuKVSUSf7wtntv20pWABSYPiMrKmootWD1-emD5qUSdXNJrlL6AgAutVqR-_0B58mORTfGOPnwWbg4HTEkm30MhQ8p286PPntM1-RisGPCm_9dk4-nx_3mpdzunl837bZ0dSNy2aEAJR0bFLW0odB1rJdq0NQqC65H0HUvEUGgspbrHihTwilWc8U1cGRrcrd4Y8reJOczuoOLIaDLRjRUKMlOULVAbo4pzTiY4-wnO38bCua3h_nrYaRZerAfalJSVg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermal blooming compensation instabilities</title><source>Optica Publishing Group Journals</source><creator>Karr, T. J.</creator><creatorcontrib>Karr, T. J. ; Lawrence Livermore National Laboratory, Livermore, California 94550(US)</creatorcontrib><description>A general model is developed for the time-dependent growth of small perturbations in thermally bloomed beams with and without correction. Intensity and phase everywhere along the path of an intense forward beam and a weak backward beam are determined from the initial beam and path conditions by five time-dependent Green functions. The Green functions are exact solutions of the combined linearized blooming and turbulence problems and are given in closed form for an arbitrary path. Any correction method is a boundary condition connecting the forward and backward fields. Time-dependent instabilities correspond to singularities in the appropriate combination of Green functions. Perfect field conjugation gives perfect correction and is stable at all spatial frequencies. Perfect phase-reversal correction is unstable at all spatial frequencies. The instability growth rate is proportional to absorbed irradiance, and the total gain in a convection clearing time is proportional to the dimensionless blooming number. High gain is predicted in moderate blooming. Convection shear reduces the gain for irradiances with an instability growth rate much smaller than the shear rate and suppresses the gain for irradiances with a Rayleigh-range optical-path-difference growth rate much smaller than the shear rate.</description><identifier>ISSN: 1084-7529</identifier><identifier>EISSN: 1520-8532</identifier><identifier>DOI: 10.1364/JOSAA.6.001038</identifier><language>eng</language><publisher>United States</publisher><subject>420300 - Engineering- Lasers- (-1989) ; BEAMS ; CORRECTIONS ; ELECTROMAGNETIC RADIATION ; ENGINEERING ; FLUCTUATIONS ; FLUID MECHANICS ; HYDRODYNAMICS ; INSTABILITY ; INSTABILITY GROWTH RATES ; LASER RADIATION ; LASERS ; LIGHT TRANSMISSION ; MECHANICS ; NONLINEAR OPTICS ; OPTICS ; PHOTON BEAMS ; RADIATIONS ; TEMPERATURE EFFECTS ; VARIATIONS ; WAVE PROPAGATION</subject><ispartof>J. Opt. Soc. Am. A; (United States), 1989-07, Vol.6 (7), p.1038</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-be5076c3f71a1910bb3d67f81a7a0cde082d6ee05e7aa48d01375c732474804e3</citedby><cites>FETCH-LOGICAL-c295t-be5076c3f71a1910bb3d67f81a7a0cde082d6ee05e7aa48d01375c732474804e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,886,3259,27929,27930</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/5915763$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Karr, T. J.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory, Livermore, California 94550(US)</creatorcontrib><title>Thermal blooming compensation instabilities</title><title>J. Opt. Soc. Am. A; (United States)</title><description>A general model is developed for the time-dependent growth of small perturbations in thermally bloomed beams with and without correction. Intensity and phase everywhere along the path of an intense forward beam and a weak backward beam are determined from the initial beam and path conditions by five time-dependent Green functions. The Green functions are exact solutions of the combined linearized blooming and turbulence problems and are given in closed form for an arbitrary path. Any correction method is a boundary condition connecting the forward and backward fields. Time-dependent instabilities correspond to singularities in the appropriate combination of Green functions. Perfect field conjugation gives perfect correction and is stable at all spatial frequencies. Perfect phase-reversal correction is unstable at all spatial frequencies. The instability growth rate is proportional to absorbed irradiance, and the total gain in a convection clearing time is proportional to the dimensionless blooming number. High gain is predicted in moderate blooming. Convection shear reduces the gain for irradiances with an instability growth rate much smaller than the shear rate and suppresses the gain for irradiances with a Rayleigh-range optical-path-difference growth rate much smaller than the shear rate.</description><subject>420300 - Engineering- Lasers- (-1989)</subject><subject>BEAMS</subject><subject>CORRECTIONS</subject><subject>ELECTROMAGNETIC RADIATION</subject><subject>ENGINEERING</subject><subject>FLUCTUATIONS</subject><subject>FLUID MECHANICS</subject><subject>HYDRODYNAMICS</subject><subject>INSTABILITY</subject><subject>INSTABILITY GROWTH RATES</subject><subject>LASER RADIATION</subject><subject>LASERS</subject><subject>LIGHT TRANSMISSION</subject><subject>MECHANICS</subject><subject>NONLINEAR OPTICS</subject><subject>OPTICS</subject><subject>PHOTON BEAMS</subject><subject>RADIATIONS</subject><subject>TEMPERATURE EFFECTS</subject><subject>VARIATIONS</subject><subject>WAVE PROPAGATION</subject><issn>1084-7529</issn><issn>1520-8532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNotkDtPwzAURi0EEqWwMkesKOE6fmaMKp6q1IEyW45zQ40Su4q98O8phOn7hqMzHEJuKVSUSf7wtntv20pWABSYPiMrKmootWD1-emD5qUSdXNJrlL6AgAutVqR-_0B58mORTfGOPnwWbg4HTEkm30MhQ8p286PPntM1-RisGPCm_9dk4-nx_3mpdzunl837bZ0dSNy2aEAJR0bFLW0odB1rJdq0NQqC65H0HUvEUGgspbrHihTwilWc8U1cGRrcrd4Y8reJOczuoOLIaDLRjRUKMlOULVAbo4pzTiY4-wnO38bCua3h_nrYaRZerAfalJSVg</recordid><startdate>19890701</startdate><enddate>19890701</enddate><creator>Karr, T. J.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19890701</creationdate><title>Thermal blooming compensation instabilities</title><author>Karr, T. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-be5076c3f71a1910bb3d67f81a7a0cde082d6ee05e7aa48d01375c732474804e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>420300 - Engineering- Lasers- (-1989)</topic><topic>BEAMS</topic><topic>CORRECTIONS</topic><topic>ELECTROMAGNETIC RADIATION</topic><topic>ENGINEERING</topic><topic>FLUCTUATIONS</topic><topic>FLUID MECHANICS</topic><topic>HYDRODYNAMICS</topic><topic>INSTABILITY</topic><topic>INSTABILITY GROWTH RATES</topic><topic>LASER RADIATION</topic><topic>LASERS</topic><topic>LIGHT TRANSMISSION</topic><topic>MECHANICS</topic><topic>NONLINEAR OPTICS</topic><topic>OPTICS</topic><topic>PHOTON BEAMS</topic><topic>RADIATIONS</topic><topic>TEMPERATURE EFFECTS</topic><topic>VARIATIONS</topic><topic>WAVE PROPAGATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karr, T. J.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory, Livermore, California 94550(US)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>J. Opt. Soc. Am. A; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karr, T. J.</au><aucorp>Lawrence Livermore National Laboratory, Livermore, California 94550(US)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal blooming compensation instabilities</atitle><jtitle>J. Opt. Soc. Am. A; (United States)</jtitle><date>1989-07-01</date><risdate>1989</risdate><volume>6</volume><issue>7</issue><spage>1038</spage><pages>1038-</pages><issn>1084-7529</issn><eissn>1520-8532</eissn><abstract>A general model is developed for the time-dependent growth of small perturbations in thermally bloomed beams with and without correction. Intensity and phase everywhere along the path of an intense forward beam and a weak backward beam are determined from the initial beam and path conditions by five time-dependent Green functions. The Green functions are exact solutions of the combined linearized blooming and turbulence problems and are given in closed form for an arbitrary path. Any correction method is a boundary condition connecting the forward and backward fields. Time-dependent instabilities correspond to singularities in the appropriate combination of Green functions. Perfect field conjugation gives perfect correction and is stable at all spatial frequencies. Perfect phase-reversal correction is unstable at all spatial frequencies. The instability growth rate is proportional to absorbed irradiance, and the total gain in a convection clearing time is proportional to the dimensionless blooming number. High gain is predicted in moderate blooming. Convection shear reduces the gain for irradiances with an instability growth rate much smaller than the shear rate and suppresses the gain for irradiances with a Rayleigh-range optical-path-difference growth rate much smaller than the shear rate.</abstract><cop>United States</cop><doi>10.1364/JOSAA.6.001038</doi></addata></record>
fulltext fulltext
identifier ISSN: 1084-7529
ispartof J. Opt. Soc. Am. A; (United States), 1989-07, Vol.6 (7), p.1038
issn 1084-7529
1520-8532
language eng
recordid cdi_crossref_primary_10_1364_JOSAA_6_001038
source Optica Publishing Group Journals
subjects 420300 - Engineering- Lasers- (-1989)
BEAMS
CORRECTIONS
ELECTROMAGNETIC RADIATION
ENGINEERING
FLUCTUATIONS
FLUID MECHANICS
HYDRODYNAMICS
INSTABILITY
INSTABILITY GROWTH RATES
LASER RADIATION
LASERS
LIGHT TRANSMISSION
MECHANICS
NONLINEAR OPTICS
OPTICS
PHOTON BEAMS
RADIATIONS
TEMPERATURE EFFECTS
VARIATIONS
WAVE PROPAGATION
title Thermal blooming compensation instabilities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T03%3A28%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20blooming%20compensation%20instabilities&rft.jtitle=J.%20Opt.%20Soc.%20Am.%20A;%20(United%20States)&rft.au=Karr,%20T.%20J.&rft.aucorp=Lawrence%20Livermore%20National%20Laboratory,%20Livermore,%20California%2094550(US)&rft.date=1989-07-01&rft.volume=6&rft.issue=7&rft.spage=1038&rft.pages=1038-&rft.issn=1084-7529&rft.eissn=1520-8532&rft_id=info:doi/10.1364/JOSAA.6.001038&rft_dat=%3Ccrossref_osti_%3E10_1364_JOSAA_6_001038%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true