Assessment on the in-field lightpath QoT computation including connector loss uncertainties

Reliable and conservative computation of the quality of transmission (QoT) of transparent lightpaths (LPs) is a crucial need for software-defined control and management of the wavelength division multiplexing optical transport. The LP QoT is summarized by the generalized SNR (GSNR) that can be compu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optical communications and networking 2021-02, Vol.13 (2), p.A156-A164
Hauptverfasser: Ferrari, Alessio, Balasubramanian, Karthikeyan, Filer, Mark, Yin, Yawei, Le Rouzic, Esther, Kundrat, Jan, Grammel, Gert, Galimberti, Gabriele, Curri, Vittorio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page A164
container_issue 2
container_start_page A156
container_title Journal of optical communications and networking
container_volume 13
creator Ferrari, Alessio
Balasubramanian, Karthikeyan
Filer, Mark
Yin, Yawei
Le Rouzic, Esther
Kundrat, Jan
Grammel, Gert
Galimberti, Gabriele
Curri, Vittorio
description Reliable and conservative computation of the quality of transmission (QoT) of transparent lightpaths (LPs) is a crucial need for software-defined control and management of the wavelength division multiplexing optical transport. The LP QoT is summarized by the generalized SNR (GSNR) that can be computed by a QoT estimator (QoT-E). Within the context of network automation, the QoT-E must rely only on data from the network controller or provided by network elements through common control protocols and data structures. Therefore, given the theoretical accuracy of the QoT-E, the in-field accuracy in the GSNR computation is also determined by the level of knowledge of input parameters. Among these, a fundamental value is the connector loss at the input of each fiber span, which defines the actual power levels triggering the nonlinear effects in the fiber, and so defining the amount of nonlinear interference and spectra tilt due to the stimulated Raman scattering introduced by the fiber span. This value cannot be easily measured and may vary in time because of equipment update or maintenance. In this paper, we consider a lab measurement campaign in which the GSNR has been computed by means of the open source project Gaussian noise model in Python (GNPy) and analyze the computation error distribution. We show how the assumption on the value for the connector loss modifies the GSNR computation error and how the GSNR computation is more conservative while accurate at the lower values for the connector loss. Using the outcome of the measurement campaign carried out in the laboratory, we present results on the error of GSNR computation in a production network, specifically, over two paths of the Microsoft core network. Using GNPy with the assumption of a connector loss of 0.25 dB as derived from the measurement campaign carried out in the laboratory, and using the physical layer description from the network controller, we show that GNPy is not conservative by overestimating the GSNR in only 5% of cases, while in conservative predictions, the underestimation error exceeds 1 dB only for a few outliers.
doi_str_mv 10.1364/JOCN.402969
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1364_JOCN_402969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9308057</ieee_id><sourcerecordid>2473268179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-dbd8dd2f6d90b33b6f2c3321df5a2b3354909482c2f0ae681e2999e2183c4dd63</originalsourceid><addsrcrecordid>eNo9kM1LwzAYh4MoOKcnj14CHqUzH23aHMfwk-EQ5slD6ZI3W0aX1iQ9-N-bUdnpffnxvB88CN1SMqNc5I_vq8XHLCdMCnmGJlTmPCOCy_NTz8glugphT4goKS0m6HseAoRwABdx53DcAbYuMxZajVu73cW-iTv82a2x6g79EJtoE2adagdt3TalzoGKncdtFwIenAIfG-uihXCNLkzTBrj5r1P09fy0Xrxmy9XL22K-zBSraMz0RldaMyO0JBvON8IwxTmj2hQNS0GRSyLziilmSAOiosCklMBoxVWuteBTdD_u7X33M0CI9b4bvEsna5aXnKWRUibqYaSUT596MHXv7aHxvzUl9dFefbRXj_YSfTfSFgBOpOSkIkXJ_wBSw2vs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473268179</pqid></control><display><type>article</type><title>Assessment on the in-field lightpath QoT computation including connector loss uncertainties</title><source>IEEE Electronic Library (IEL)</source><creator>Ferrari, Alessio ; Balasubramanian, Karthikeyan ; Filer, Mark ; Yin, Yawei ; Le Rouzic, Esther ; Kundrat, Jan ; Grammel, Gert ; Galimberti, Gabriele ; Curri, Vittorio</creator><creatorcontrib>Ferrari, Alessio ; Balasubramanian, Karthikeyan ; Filer, Mark ; Yin, Yawei ; Le Rouzic, Esther ; Kundrat, Jan ; Grammel, Gert ; Galimberti, Gabriele ; Curri, Vittorio</creatorcontrib><description>Reliable and conservative computation of the quality of transmission (QoT) of transparent lightpaths (LPs) is a crucial need for software-defined control and management of the wavelength division multiplexing optical transport. The LP QoT is summarized by the generalized SNR (GSNR) that can be computed by a QoT estimator (QoT-E). Within the context of network automation, the QoT-E must rely only on data from the network controller or provided by network elements through common control protocols and data structures. Therefore, given the theoretical accuracy of the QoT-E, the in-field accuracy in the GSNR computation is also determined by the level of knowledge of input parameters. Among these, a fundamental value is the connector loss at the input of each fiber span, which defines the actual power levels triggering the nonlinear effects in the fiber, and so defining the amount of nonlinear interference and spectra tilt due to the stimulated Raman scattering introduced by the fiber span. This value cannot be easily measured and may vary in time because of equipment update or maintenance. In this paper, we consider a lab measurement campaign in which the GSNR has been computed by means of the open source project Gaussian noise model in Python (GNPy) and analyze the computation error distribution. We show how the assumption on the value for the connector loss modifies the GSNR computation error and how the GSNR computation is more conservative while accurate at the lower values for the connector loss. Using the outcome of the measurement campaign carried out in the laboratory, we present results on the error of GSNR computation in a production network, specifically, over two paths of the Microsoft core network. Using GNPy with the assumption of a connector loss of 0.25 dB as derived from the measurement campaign carried out in the laboratory, and using the physical layer description from the network controller, we show that GNPy is not conservative by overestimating the GSNR in only 5% of cases, while in conservative predictions, the underestimation error exceeds 1 dB only for a few outliers.</description><identifier>ISSN: 1943-0620</identifier><identifier>EISSN: 1943-0639</identifier><identifier>DOI: 10.1364/JOCN.402969</identifier><identifier>CODEN: JOCNBB</identifier><language>eng</language><publisher>Piscataway: Optica Publishing Group</publisher><subject>Accuracy ; Channel estimation ; Computation ; Computer networks ; Connectors ; Controllers ; Data structures ; Error analysis ; Laboratories ; Measurement uncertainty ; Modulation ; Nonlinear optics ; Optical fiber networks ; Outliers (statistics) ; Protocol (computers) ; Raman spectra ; Random noise ; Wavelength division multiplexing</subject><ispartof>Journal of optical communications and networking, 2021-02, Vol.13 (2), p.A156-A164</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-dbd8dd2f6d90b33b6f2c3321df5a2b3354909482c2f0ae681e2999e2183c4dd63</citedby><cites>FETCH-LOGICAL-c281t-dbd8dd2f6d90b33b6f2c3321df5a2b3354909482c2f0ae681e2999e2183c4dd63</cites><orcidid>0000-0001-6569-9260 ; 0000-0001-9483-3975 ; 0000-0003-2957-9098 ; 0000-0003-0691-0067</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9308057$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9308057$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ferrari, Alessio</creatorcontrib><creatorcontrib>Balasubramanian, Karthikeyan</creatorcontrib><creatorcontrib>Filer, Mark</creatorcontrib><creatorcontrib>Yin, Yawei</creatorcontrib><creatorcontrib>Le Rouzic, Esther</creatorcontrib><creatorcontrib>Kundrat, Jan</creatorcontrib><creatorcontrib>Grammel, Gert</creatorcontrib><creatorcontrib>Galimberti, Gabriele</creatorcontrib><creatorcontrib>Curri, Vittorio</creatorcontrib><title>Assessment on the in-field lightpath QoT computation including connector loss uncertainties</title><title>Journal of optical communications and networking</title><addtitle>jocn</addtitle><description>Reliable and conservative computation of the quality of transmission (QoT) of transparent lightpaths (LPs) is a crucial need for software-defined control and management of the wavelength division multiplexing optical transport. The LP QoT is summarized by the generalized SNR (GSNR) that can be computed by a QoT estimator (QoT-E). Within the context of network automation, the QoT-E must rely only on data from the network controller or provided by network elements through common control protocols and data structures. Therefore, given the theoretical accuracy of the QoT-E, the in-field accuracy in the GSNR computation is also determined by the level of knowledge of input parameters. Among these, a fundamental value is the connector loss at the input of each fiber span, which defines the actual power levels triggering the nonlinear effects in the fiber, and so defining the amount of nonlinear interference and spectra tilt due to the stimulated Raman scattering introduced by the fiber span. This value cannot be easily measured and may vary in time because of equipment update or maintenance. In this paper, we consider a lab measurement campaign in which the GSNR has been computed by means of the open source project Gaussian noise model in Python (GNPy) and analyze the computation error distribution. We show how the assumption on the value for the connector loss modifies the GSNR computation error and how the GSNR computation is more conservative while accurate at the lower values for the connector loss. Using the outcome of the measurement campaign carried out in the laboratory, we present results on the error of GSNR computation in a production network, specifically, over two paths of the Microsoft core network. Using GNPy with the assumption of a connector loss of 0.25 dB as derived from the measurement campaign carried out in the laboratory, and using the physical layer description from the network controller, we show that GNPy is not conservative by overestimating the GSNR in only 5% of cases, while in conservative predictions, the underestimation error exceeds 1 dB only for a few outliers.</description><subject>Accuracy</subject><subject>Channel estimation</subject><subject>Computation</subject><subject>Computer networks</subject><subject>Connectors</subject><subject>Controllers</subject><subject>Data structures</subject><subject>Error analysis</subject><subject>Laboratories</subject><subject>Measurement uncertainty</subject><subject>Modulation</subject><subject>Nonlinear optics</subject><subject>Optical fiber networks</subject><subject>Outliers (statistics)</subject><subject>Protocol (computers)</subject><subject>Raman spectra</subject><subject>Random noise</subject><subject>Wavelength division multiplexing</subject><issn>1943-0620</issn><issn>1943-0639</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LwzAYh4MoOKcnj14CHqUzH23aHMfwk-EQ5slD6ZI3W0aX1iQ9-N-bUdnpffnxvB88CN1SMqNc5I_vq8XHLCdMCnmGJlTmPCOCy_NTz8glugphT4goKS0m6HseAoRwABdx53DcAbYuMxZajVu73cW-iTv82a2x6g79EJtoE2adagdt3TalzoGKncdtFwIenAIfG-uihXCNLkzTBrj5r1P09fy0Xrxmy9XL22K-zBSraMz0RldaMyO0JBvON8IwxTmj2hQNS0GRSyLziilmSAOiosCklMBoxVWuteBTdD_u7X33M0CI9b4bvEsna5aXnKWRUibqYaSUT596MHXv7aHxvzUl9dFefbRXj_YSfTfSFgBOpOSkIkXJ_wBSw2vs</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Ferrari, Alessio</creator><creator>Balasubramanian, Karthikeyan</creator><creator>Filer, Mark</creator><creator>Yin, Yawei</creator><creator>Le Rouzic, Esther</creator><creator>Kundrat, Jan</creator><creator>Grammel, Gert</creator><creator>Galimberti, Gabriele</creator><creator>Curri, Vittorio</creator><general>Optica Publishing Group</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6569-9260</orcidid><orcidid>https://orcid.org/0000-0001-9483-3975</orcidid><orcidid>https://orcid.org/0000-0003-2957-9098</orcidid><orcidid>https://orcid.org/0000-0003-0691-0067</orcidid></search><sort><creationdate>20210201</creationdate><title>Assessment on the in-field lightpath QoT computation including connector loss uncertainties</title><author>Ferrari, Alessio ; Balasubramanian, Karthikeyan ; Filer, Mark ; Yin, Yawei ; Le Rouzic, Esther ; Kundrat, Jan ; Grammel, Gert ; Galimberti, Gabriele ; Curri, Vittorio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-dbd8dd2f6d90b33b6f2c3321df5a2b3354909482c2f0ae681e2999e2183c4dd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Channel estimation</topic><topic>Computation</topic><topic>Computer networks</topic><topic>Connectors</topic><topic>Controllers</topic><topic>Data structures</topic><topic>Error analysis</topic><topic>Laboratories</topic><topic>Measurement uncertainty</topic><topic>Modulation</topic><topic>Nonlinear optics</topic><topic>Optical fiber networks</topic><topic>Outliers (statistics)</topic><topic>Protocol (computers)</topic><topic>Raman spectra</topic><topic>Random noise</topic><topic>Wavelength division multiplexing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferrari, Alessio</creatorcontrib><creatorcontrib>Balasubramanian, Karthikeyan</creatorcontrib><creatorcontrib>Filer, Mark</creatorcontrib><creatorcontrib>Yin, Yawei</creatorcontrib><creatorcontrib>Le Rouzic, Esther</creatorcontrib><creatorcontrib>Kundrat, Jan</creatorcontrib><creatorcontrib>Grammel, Gert</creatorcontrib><creatorcontrib>Galimberti, Gabriele</creatorcontrib><creatorcontrib>Curri, Vittorio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of optical communications and networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ferrari, Alessio</au><au>Balasubramanian, Karthikeyan</au><au>Filer, Mark</au><au>Yin, Yawei</au><au>Le Rouzic, Esther</au><au>Kundrat, Jan</au><au>Grammel, Gert</au><au>Galimberti, Gabriele</au><au>Curri, Vittorio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment on the in-field lightpath QoT computation including connector loss uncertainties</atitle><jtitle>Journal of optical communications and networking</jtitle><stitle>jocn</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>13</volume><issue>2</issue><spage>A156</spage><epage>A164</epage><pages>A156-A164</pages><issn>1943-0620</issn><eissn>1943-0639</eissn><coden>JOCNBB</coden><abstract>Reliable and conservative computation of the quality of transmission (QoT) of transparent lightpaths (LPs) is a crucial need for software-defined control and management of the wavelength division multiplexing optical transport. The LP QoT is summarized by the generalized SNR (GSNR) that can be computed by a QoT estimator (QoT-E). Within the context of network automation, the QoT-E must rely only on data from the network controller or provided by network elements through common control protocols and data structures. Therefore, given the theoretical accuracy of the QoT-E, the in-field accuracy in the GSNR computation is also determined by the level of knowledge of input parameters. Among these, a fundamental value is the connector loss at the input of each fiber span, which defines the actual power levels triggering the nonlinear effects in the fiber, and so defining the amount of nonlinear interference and spectra tilt due to the stimulated Raman scattering introduced by the fiber span. This value cannot be easily measured and may vary in time because of equipment update or maintenance. In this paper, we consider a lab measurement campaign in which the GSNR has been computed by means of the open source project Gaussian noise model in Python (GNPy) and analyze the computation error distribution. We show how the assumption on the value for the connector loss modifies the GSNR computation error and how the GSNR computation is more conservative while accurate at the lower values for the connector loss. Using the outcome of the measurement campaign carried out in the laboratory, we present results on the error of GSNR computation in a production network, specifically, over two paths of the Microsoft core network. Using GNPy with the assumption of a connector loss of 0.25 dB as derived from the measurement campaign carried out in the laboratory, and using the physical layer description from the network controller, we show that GNPy is not conservative by overestimating the GSNR in only 5% of cases, while in conservative predictions, the underestimation error exceeds 1 dB only for a few outliers.</abstract><cop>Piscataway</cop><pub>Optica Publishing Group</pub><doi>10.1364/JOCN.402969</doi><orcidid>https://orcid.org/0000-0001-6569-9260</orcidid><orcidid>https://orcid.org/0000-0001-9483-3975</orcidid><orcidid>https://orcid.org/0000-0003-2957-9098</orcidid><orcidid>https://orcid.org/0000-0003-0691-0067</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1943-0620
ispartof Journal of optical communications and networking, 2021-02, Vol.13 (2), p.A156-A164
issn 1943-0620
1943-0639
language eng
recordid cdi_crossref_primary_10_1364_JOCN_402969
source IEEE Electronic Library (IEL)
subjects Accuracy
Channel estimation
Computation
Computer networks
Connectors
Controllers
Data structures
Error analysis
Laboratories
Measurement uncertainty
Modulation
Nonlinear optics
Optical fiber networks
Outliers (statistics)
Protocol (computers)
Raman spectra
Random noise
Wavelength division multiplexing
title Assessment on the in-field lightpath QoT computation including connector loss uncertainties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A56%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20on%20the%20in-field%20lightpath%20QoT%20computation%20including%20connector%20loss%20uncertainties&rft.jtitle=Journal%20of%20optical%20communications%20and%20networking&rft.au=Ferrari,%20Alessio&rft.date=2021-02-01&rft.volume=13&rft.issue=2&rft.spage=A156&rft.epage=A164&rft.pages=A156-A164&rft.issn=1943-0620&rft.eissn=1943-0639&rft.coden=JOCNBB&rft_id=info:doi/10.1364/JOCN.402969&rft_dat=%3Cproquest_RIE%3E2473268179%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473268179&rft_id=info:pmid/&rft_ieee_id=9308057&rfr_iscdi=true