Virtualization of elastic optical networks and regenerators with traffic grooming
An elastic optical network (EON) plays an important role in transport technology for virtualization of networks. A key aspect of EONs is to establish lightpaths (virtual links) with exactly the amount of spectrum that is needed and with the possibility of grooming, the process of grouping many small...
Gespeichert in:
Veröffentlicht in: | Journal of optical communications and networking 2020-12, Vol.12 (12), p.428-442 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 442 |
---|---|
container_issue | 12 |
container_start_page | 428 |
container_title | Journal of optical communications and networking |
container_volume | 12 |
creator | Assis, K. D. R. Santos, A. F. Almeida, R. C. Reed, M. J. Jaumard, B. Simeonidou, D. |
description | An elastic optical network (EON) plays an important role in transport technology for virtualization of networks. A key aspect of EONs is to establish lightpaths (virtual links) with exactly the amount of spectrum that is needed and with the possibility of grooming, the process of grouping many small traffic flows into larger units, creating a super-lightpath. Grooming eliminates the need for many guard bands between lightpaths and also saves transceivers; however, it often leads to the need to perform optical–electrical–optical conversions to multiple-data-rate optical signals at intermediate nodes. The aim of this paper is to provide a mixed-integer linear programming (MILP) formulation, as well as heuristic and meta-heuristic approaches, for the design of multiple virtual optical networks (VONs) in an elastic optical substrate network with bandwidth-variable lightpaths, modulation format constraints, and virtual elastic regenerator placement. Traffic grooming is allowed inside each VON, and a distance-adaptive modulation format technique is employed to guarantee efficiency in terms of bandwidth for a physical substrate, subject to several virtual topologies. A reduced MILP formulation without grooming capability is also proposed for comparison. The complete MILP formulation jointly solves the virtual topology design, regenerator placement, and grooming problems, as well as the routing, modulation, and spectrum assignment (RMSA) problem. The reduced MILP formulation, heuristics, and meta-heuristic, on the other hand, separate the virtual topology design problem from the RMSA problem. It is shown that the grooming approach can provide good results, since it solves the problem for a complete design when compared to the approach without grooming. Furthermore, heuristic solutions for large networks are proposed, which present good performance (in terms of saving spectrum) for the design with large instances. |
doi_str_mv | 10.1364/JOCN.398749 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1364_JOCN_398749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9262248</ieee_id><sourcerecordid>2462226654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-7c6f0dc2ec86ca1cd8656e0576fd9d20495a49b13cc57a0249b9b56bad6b1d453</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKsrl24CLmVq3jNZSrE-KBZB3Q6ZPGrqdFKTlKK_3ikj3dxzFh_nwgfAJUYTTAW7fV5MXyZUViWTR2CEJaMFElQeHzpBp-AspRVCosSYj8Drh495q1r_q7IPHQwO2lal7DUMm_6qFnY270L8SlB1Bka7tJ2NKoeY4M7nT5ijcq7HlzGEte-W5-DEqTbZi_8cg_fZ_dv0sZgvHp6md_NCU1zlotTCIaOJ1ZXQCmtTCS4s4qVwRhqCmOSKyQZTrXmpEOm7bLholBENNozTMbgedjcxfG9tyvUqbGPXv6wJE4QQITjrqZuB0jGkFK2rN9GvVfypMar3zuq9s3pw1tNXA-2ttQdSkn6OVfQPAp9o2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2462226654</pqid></control><display><type>article</type><title>Virtualization of elastic optical networks and regenerators with traffic grooming</title><source>IEEE Electronic Library (IEL)</source><creator>Assis, K. D. R. ; Santos, A. F. ; Almeida, R. C. ; Reed, M. J. ; Jaumard, B. ; Simeonidou, D.</creator><creatorcontrib>Assis, K. D. R. ; Santos, A. F. ; Almeida, R. C. ; Reed, M. J. ; Jaumard, B. ; Simeonidou, D.</creatorcontrib><description>An elastic optical network (EON) plays an important role in transport technology for virtualization of networks. A key aspect of EONs is to establish lightpaths (virtual links) with exactly the amount of spectrum that is needed and with the possibility of grooming, the process of grouping many small traffic flows into larger units, creating a super-lightpath. Grooming eliminates the need for many guard bands between lightpaths and also saves transceivers; however, it often leads to the need to perform optical–electrical–optical conversions to multiple-data-rate optical signals at intermediate nodes. The aim of this paper is to provide a mixed-integer linear programming (MILP) formulation, as well as heuristic and meta-heuristic approaches, for the design of multiple virtual optical networks (VONs) in an elastic optical substrate network with bandwidth-variable lightpaths, modulation format constraints, and virtual elastic regenerator placement. Traffic grooming is allowed inside each VON, and a distance-adaptive modulation format technique is employed to guarantee efficiency in terms of bandwidth for a physical substrate, subject to several virtual topologies. A reduced MILP formulation without grooming capability is also proposed for comparison. The complete MILP formulation jointly solves the virtual topology design, regenerator placement, and grooming problems, as well as the routing, modulation, and spectrum assignment (RMSA) problem. The reduced MILP formulation, heuristics, and meta-heuristic, on the other hand, separate the virtual topology design problem from the RMSA problem. It is shown that the grooming approach can provide good results, since it solves the problem for a complete design when compared to the approach without grooming. Furthermore, heuristic solutions for large networks are proposed, which present good performance (in terms of saving spectrum) for the design with large instances.</description><identifier>ISSN: 1943-0620</identifier><identifier>EISSN: 1943-0639</identifier><identifier>DOI: 10.1364/JOCN.398749</identifier><identifier>CODEN: JOCNBB</identifier><language>eng</language><publisher>Piscataway: Optica Publishing Group</publisher><subject>Format ; Heuristic ; Heuristic methods ; Integer programming ; Linear programming ; Mixed integer ; Modulation ; Network topologies ; Network topology ; Optical communication ; Optical fiber networks ; Placement ; Regenerators ; Repeaters ; Routing ; Spectrum allocation ; Substrates ; Topology ; Traffic flow ; Transceivers ; Virtual networks ; Virtualization</subject><ispartof>Journal of optical communications and networking, 2020-12, Vol.12 (12), p.428-442</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-7c6f0dc2ec86ca1cd8656e0576fd9d20495a49b13cc57a0249b9b56bad6b1d453</citedby><cites>FETCH-LOGICAL-c318t-7c6f0dc2ec86ca1cd8656e0576fd9d20495a49b13cc57a0249b9b56bad6b1d453</cites><orcidid>0000-0003-3443-4918</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9262248$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9262248$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Assis, K. D. R.</creatorcontrib><creatorcontrib>Santos, A. F.</creatorcontrib><creatorcontrib>Almeida, R. C.</creatorcontrib><creatorcontrib>Reed, M. J.</creatorcontrib><creatorcontrib>Jaumard, B.</creatorcontrib><creatorcontrib>Simeonidou, D.</creatorcontrib><title>Virtualization of elastic optical networks and regenerators with traffic grooming</title><title>Journal of optical communications and networking</title><addtitle>jocn</addtitle><description>An elastic optical network (EON) plays an important role in transport technology for virtualization of networks. A key aspect of EONs is to establish lightpaths (virtual links) with exactly the amount of spectrum that is needed and with the possibility of grooming, the process of grouping many small traffic flows into larger units, creating a super-lightpath. Grooming eliminates the need for many guard bands between lightpaths and also saves transceivers; however, it often leads to the need to perform optical–electrical–optical conversions to multiple-data-rate optical signals at intermediate nodes. The aim of this paper is to provide a mixed-integer linear programming (MILP) formulation, as well as heuristic and meta-heuristic approaches, for the design of multiple virtual optical networks (VONs) in an elastic optical substrate network with bandwidth-variable lightpaths, modulation format constraints, and virtual elastic regenerator placement. Traffic grooming is allowed inside each VON, and a distance-adaptive modulation format technique is employed to guarantee efficiency in terms of bandwidth for a physical substrate, subject to several virtual topologies. A reduced MILP formulation without grooming capability is also proposed for comparison. The complete MILP formulation jointly solves the virtual topology design, regenerator placement, and grooming problems, as well as the routing, modulation, and spectrum assignment (RMSA) problem. The reduced MILP formulation, heuristics, and meta-heuristic, on the other hand, separate the virtual topology design problem from the RMSA problem. It is shown that the grooming approach can provide good results, since it solves the problem for a complete design when compared to the approach without grooming. Furthermore, heuristic solutions for large networks are proposed, which present good performance (in terms of saving spectrum) for the design with large instances.</description><subject>Format</subject><subject>Heuristic</subject><subject>Heuristic methods</subject><subject>Integer programming</subject><subject>Linear programming</subject><subject>Mixed integer</subject><subject>Modulation</subject><subject>Network topologies</subject><subject>Network topology</subject><subject>Optical communication</subject><subject>Optical fiber networks</subject><subject>Placement</subject><subject>Regenerators</subject><subject>Repeaters</subject><subject>Routing</subject><subject>Spectrum allocation</subject><subject>Substrates</subject><subject>Topology</subject><subject>Traffic flow</subject><subject>Transceivers</subject><subject>Virtual networks</subject><subject>Virtualization</subject><issn>1943-0620</issn><issn>1943-0639</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEUhYMoWKsrl24CLmVq3jNZSrE-KBZB3Q6ZPGrqdFKTlKK_3ikj3dxzFh_nwgfAJUYTTAW7fV5MXyZUViWTR2CEJaMFElQeHzpBp-AspRVCosSYj8Drh495q1r_q7IPHQwO2lal7DUMm_6qFnY270L8SlB1Bka7tJ2NKoeY4M7nT5ijcq7HlzGEte-W5-DEqTbZi_8cg_fZ_dv0sZgvHp6md_NCU1zlotTCIaOJ1ZXQCmtTCS4s4qVwRhqCmOSKyQZTrXmpEOm7bLholBENNozTMbgedjcxfG9tyvUqbGPXv6wJE4QQITjrqZuB0jGkFK2rN9GvVfypMar3zuq9s3pw1tNXA-2ttQdSkn6OVfQPAp9o2Q</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Assis, K. D. R.</creator><creator>Santos, A. F.</creator><creator>Almeida, R. C.</creator><creator>Reed, M. J.</creator><creator>Jaumard, B.</creator><creator>Simeonidou, D.</creator><general>Optica Publishing Group</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3443-4918</orcidid></search><sort><creationdate>20201201</creationdate><title>Virtualization of elastic optical networks and regenerators with traffic grooming</title><author>Assis, K. D. R. ; Santos, A. F. ; Almeida, R. C. ; Reed, M. J. ; Jaumard, B. ; Simeonidou, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-7c6f0dc2ec86ca1cd8656e0576fd9d20495a49b13cc57a0249b9b56bad6b1d453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Format</topic><topic>Heuristic</topic><topic>Heuristic methods</topic><topic>Integer programming</topic><topic>Linear programming</topic><topic>Mixed integer</topic><topic>Modulation</topic><topic>Network topologies</topic><topic>Network topology</topic><topic>Optical communication</topic><topic>Optical fiber networks</topic><topic>Placement</topic><topic>Regenerators</topic><topic>Repeaters</topic><topic>Routing</topic><topic>Spectrum allocation</topic><topic>Substrates</topic><topic>Topology</topic><topic>Traffic flow</topic><topic>Transceivers</topic><topic>Virtual networks</topic><topic>Virtualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Assis, K. D. R.</creatorcontrib><creatorcontrib>Santos, A. F.</creatorcontrib><creatorcontrib>Almeida, R. C.</creatorcontrib><creatorcontrib>Reed, M. J.</creatorcontrib><creatorcontrib>Jaumard, B.</creatorcontrib><creatorcontrib>Simeonidou, D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of optical communications and networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Assis, K. D. R.</au><au>Santos, A. F.</au><au>Almeida, R. C.</au><au>Reed, M. J.</au><au>Jaumard, B.</au><au>Simeonidou, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Virtualization of elastic optical networks and regenerators with traffic grooming</atitle><jtitle>Journal of optical communications and networking</jtitle><stitle>jocn</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>12</volume><issue>12</issue><spage>428</spage><epage>442</epage><pages>428-442</pages><issn>1943-0620</issn><eissn>1943-0639</eissn><coden>JOCNBB</coden><abstract>An elastic optical network (EON) plays an important role in transport technology for virtualization of networks. A key aspect of EONs is to establish lightpaths (virtual links) with exactly the amount of spectrum that is needed and with the possibility of grooming, the process of grouping many small traffic flows into larger units, creating a super-lightpath. Grooming eliminates the need for many guard bands between lightpaths and also saves transceivers; however, it often leads to the need to perform optical–electrical–optical conversions to multiple-data-rate optical signals at intermediate nodes. The aim of this paper is to provide a mixed-integer linear programming (MILP) formulation, as well as heuristic and meta-heuristic approaches, for the design of multiple virtual optical networks (VONs) in an elastic optical substrate network with bandwidth-variable lightpaths, modulation format constraints, and virtual elastic regenerator placement. Traffic grooming is allowed inside each VON, and a distance-adaptive modulation format technique is employed to guarantee efficiency in terms of bandwidth for a physical substrate, subject to several virtual topologies. A reduced MILP formulation without grooming capability is also proposed for comparison. The complete MILP formulation jointly solves the virtual topology design, regenerator placement, and grooming problems, as well as the routing, modulation, and spectrum assignment (RMSA) problem. The reduced MILP formulation, heuristics, and meta-heuristic, on the other hand, separate the virtual topology design problem from the RMSA problem. It is shown that the grooming approach can provide good results, since it solves the problem for a complete design when compared to the approach without grooming. Furthermore, heuristic solutions for large networks are proposed, which present good performance (in terms of saving spectrum) for the design with large instances.</abstract><cop>Piscataway</cop><pub>Optica Publishing Group</pub><doi>10.1364/JOCN.398749</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3443-4918</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1943-0620 |
ispartof | Journal of optical communications and networking, 2020-12, Vol.12 (12), p.428-442 |
issn | 1943-0620 1943-0639 |
language | eng |
recordid | cdi_crossref_primary_10_1364_JOCN_398749 |
source | IEEE Electronic Library (IEL) |
subjects | Format Heuristic Heuristic methods Integer programming Linear programming Mixed integer Modulation Network topologies Network topology Optical communication Optical fiber networks Placement Regenerators Repeaters Routing Spectrum allocation Substrates Topology Traffic flow Transceivers Virtual networks Virtualization |
title | Virtualization of elastic optical networks and regenerators with traffic grooming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T02%3A42%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Virtualization%20of%20elastic%20optical%20networks%20and%20regenerators%20with%20traffic%20grooming&rft.jtitle=Journal%20of%20optical%20communications%20and%20networking&rft.au=Assis,%20K.%20D.%20R.&rft.date=2020-12-01&rft.volume=12&rft.issue=12&rft.spage=428&rft.epage=442&rft.pages=428-442&rft.issn=1943-0620&rft.eissn=1943-0639&rft.coden=JOCNBB&rft_id=info:doi/10.1364/JOCN.398749&rft_dat=%3Cproquest_RIE%3E2462226654%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2462226654&rft_id=info:pmid/&rft_ieee_id=9262248&rfr_iscdi=true |