Accurate prediction of quality of transmission based on a dynamically configurable optical impairment model

We have proposed a dynamically configurable and fast optical impairment model for the abstraction of the optical physical layer, enabling new capabilities such as indirect estimation of physical operating parameters in multivendor networks based on pre-FEC BER information and machine learning. BER i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optical communications and networking 2018-01, Vol.10 (1), p.A102-A109
Hauptverfasser: Bouda, Martin, Oda, Shoichiro, Vassilieva, Olga, Miyabe, Masatake, Yoshida, Setsuo, Katagiri, Toru, Aoki, Yasuhiko, Hoshida, Takeshi, Ikeuchi, Tadashi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page A109
container_issue 1
container_start_page A102
container_title Journal of optical communications and networking
container_volume 10
creator Bouda, Martin
Oda, Shoichiro
Vassilieva, Olga
Miyabe, Masatake
Yoshida, Setsuo
Katagiri, Toru
Aoki, Yasuhiko
Hoshida, Takeshi
Ikeuchi, Tadashi
description We have proposed a dynamically configurable and fast optical impairment model for the abstraction of the optical physical layer, enabling new capabilities such as indirect estimation of physical operating parameters in multivendor networks based on pre-FEC BER information and machine learning. BER is commonly reported by deployed coherent transponders; therefore, this scheme does not increase hardware cost. The estimated parameters can subsequently be used to predict optical signal quality at the receiver of not-already-established optical connections more accurately than possible based on the limited amount of information available at the time of offline system design. The higher accuracy and certainty reduce the required amount of required system margin that must be allocated to guarantee reliable optical connectivity. The remaining margin can then be applied toward increased transmission capacity, or a reduced number of regenerators in the network. We demonstrate the quality of transmission prediction experimentally in an optical mesh network with 0.6 dB Q-factor accuracy, and quantify the benefit in terms of network capacity gain in metro networks by impairment-aware network simulation.
doi_str_mv 10.1364/JOCN.10.00A102
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1364_JOCN_10_00A102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8273272</ieee_id><sourcerecordid>2084338021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-79b387c192eaabf40cab702503b377106492bd30adff5b3e74aea0db0bbbd9623</originalsourceid><addsrcrecordid>eNo9UMtOwzAQtBBIlMKVCxdLnFvWdhonx6riqYpe4BytH0EuedV2Dvl7EgX1tDO7M7PSEHLPYM1Emjx9HHaf65EAbBnwC7JgeSJWkIr88ow5XJObEI4AqWRssyC_W617j9HSzlvjdHRtQ9uSnnqsXBwmGD02oXYhTCeFwRo6AqRmaLB2GqtqoLptSvczBqnK0raL05q6ukPna9tEWrfGVrfkqsQq2Lv_uSTfL89fu7fV_vD6vtvuV1oIHlcyVyKTmuXcIqoyAY1KAt-AUEJKBmmSc2UEoCnLjRJWJmgRjAKllMlTLpbkcc7tfHvqbYjFse19M74sOGSJEBlwNqrWs0r7NgRvy6LzrkY_FAyKqdBiKnQic6Gj4WE2OGvtWZxxKbjk4g_mCnOy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084338021</pqid></control><display><type>article</type><title>Accurate prediction of quality of transmission based on a dynamically configurable optical impairment model</title><source>IEEE Electronic Library (IEL)</source><creator>Bouda, Martin ; Oda, Shoichiro ; Vassilieva, Olga ; Miyabe, Masatake ; Yoshida, Setsuo ; Katagiri, Toru ; Aoki, Yasuhiko ; Hoshida, Takeshi ; Ikeuchi, Tadashi</creator><creatorcontrib>Bouda, Martin ; Oda, Shoichiro ; Vassilieva, Olga ; Miyabe, Masatake ; Yoshida, Setsuo ; Katagiri, Toru ; Aoki, Yasuhiko ; Hoshida, Takeshi ; Ikeuchi, Tadashi</creatorcontrib><description>We have proposed a dynamically configurable and fast optical impairment model for the abstraction of the optical physical layer, enabling new capabilities such as indirect estimation of physical operating parameters in multivendor networks based on pre-FEC BER information and machine learning. BER is commonly reported by deployed coherent transponders; therefore, this scheme does not increase hardware cost. The estimated parameters can subsequently be used to predict optical signal quality at the receiver of not-already-established optical connections more accurately than possible based on the limited amount of information available at the time of offline system design. The higher accuracy and certainty reduce the required amount of required system margin that must be allocated to guarantee reliable optical connectivity. The remaining margin can then be applied toward increased transmission capacity, or a reduced number of regenerators in the network. We demonstrate the quality of transmission prediction experimentally in an optical mesh network with 0.6 dB Q-factor accuracy, and quantify the benefit in terms of network capacity gain in metro networks by impairment-aware network simulation.</description><identifier>ISSN: 1943-0620</identifier><identifier>EISSN: 1943-0639</identifier><identifier>DOI: 10.1364/JOCN.10.00A102</identifier><identifier>CODEN: JOCNBB</identifier><language>eng</language><publisher>Piscataway: Optica Publishing Group</publisher><subject>Adaptive optics ; All-optical networks ; Coherent communications ; Computer simulation ; Fiber nonlinear optics ; Finite element method ; Impairment ; Machine learning ; Mathematical models ; Optical amplifiers ; Optical communication ; Optical fiber communications ; Optical fiber networks ; Optical fibers ; Optical transmission modeling ; Parameter estimation ; Regenerators ; Signal quality ; Systems design ; Transponders</subject><ispartof>Journal of optical communications and networking, 2018-01, Vol.10 (1), p.A102-A109</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-79b387c192eaabf40cab702503b377106492bd30adff5b3e74aea0db0bbbd9623</citedby><cites>FETCH-LOGICAL-c332t-79b387c192eaabf40cab702503b377106492bd30adff5b3e74aea0db0bbbd9623</cites><orcidid>0000-0003-4689-2641</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8273272$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8273272$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bouda, Martin</creatorcontrib><creatorcontrib>Oda, Shoichiro</creatorcontrib><creatorcontrib>Vassilieva, Olga</creatorcontrib><creatorcontrib>Miyabe, Masatake</creatorcontrib><creatorcontrib>Yoshida, Setsuo</creatorcontrib><creatorcontrib>Katagiri, Toru</creatorcontrib><creatorcontrib>Aoki, Yasuhiko</creatorcontrib><creatorcontrib>Hoshida, Takeshi</creatorcontrib><creatorcontrib>Ikeuchi, Tadashi</creatorcontrib><title>Accurate prediction of quality of transmission based on a dynamically configurable optical impairment model</title><title>Journal of optical communications and networking</title><addtitle>jocn</addtitle><description>We have proposed a dynamically configurable and fast optical impairment model for the abstraction of the optical physical layer, enabling new capabilities such as indirect estimation of physical operating parameters in multivendor networks based on pre-FEC BER information and machine learning. BER is commonly reported by deployed coherent transponders; therefore, this scheme does not increase hardware cost. The estimated parameters can subsequently be used to predict optical signal quality at the receiver of not-already-established optical connections more accurately than possible based on the limited amount of information available at the time of offline system design. The higher accuracy and certainty reduce the required amount of required system margin that must be allocated to guarantee reliable optical connectivity. The remaining margin can then be applied toward increased transmission capacity, or a reduced number of regenerators in the network. We demonstrate the quality of transmission prediction experimentally in an optical mesh network with 0.6 dB Q-factor accuracy, and quantify the benefit in terms of network capacity gain in metro networks by impairment-aware network simulation.</description><subject>Adaptive optics</subject><subject>All-optical networks</subject><subject>Coherent communications</subject><subject>Computer simulation</subject><subject>Fiber nonlinear optics</subject><subject>Finite element method</subject><subject>Impairment</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Optical amplifiers</subject><subject>Optical communication</subject><subject>Optical fiber communications</subject><subject>Optical fiber networks</subject><subject>Optical fibers</subject><subject>Optical transmission modeling</subject><subject>Parameter estimation</subject><subject>Regenerators</subject><subject>Signal quality</subject><subject>Systems design</subject><subject>Transponders</subject><issn>1943-0620</issn><issn>1943-0639</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UMtOwzAQtBBIlMKVCxdLnFvWdhonx6riqYpe4BytH0EuedV2Dvl7EgX1tDO7M7PSEHLPYM1Emjx9HHaf65EAbBnwC7JgeSJWkIr88ow5XJObEI4AqWRssyC_W617j9HSzlvjdHRtQ9uSnnqsXBwmGD02oXYhTCeFwRo6AqRmaLB2GqtqoLptSvczBqnK0raL05q6ukPna9tEWrfGVrfkqsQq2Lv_uSTfL89fu7fV_vD6vtvuV1oIHlcyVyKTmuXcIqoyAY1KAt-AUEJKBmmSc2UEoCnLjRJWJmgRjAKllMlTLpbkcc7tfHvqbYjFse19M74sOGSJEBlwNqrWs0r7NgRvy6LzrkY_FAyKqdBiKnQic6Gj4WE2OGvtWZxxKbjk4g_mCnOy</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Bouda, Martin</creator><creator>Oda, Shoichiro</creator><creator>Vassilieva, Olga</creator><creator>Miyabe, Masatake</creator><creator>Yoshida, Setsuo</creator><creator>Katagiri, Toru</creator><creator>Aoki, Yasuhiko</creator><creator>Hoshida, Takeshi</creator><creator>Ikeuchi, Tadashi</creator><general>Optica Publishing Group</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4689-2641</orcidid></search><sort><creationdate>201801</creationdate><title>Accurate prediction of quality of transmission based on a dynamically configurable optical impairment model</title><author>Bouda, Martin ; Oda, Shoichiro ; Vassilieva, Olga ; Miyabe, Masatake ; Yoshida, Setsuo ; Katagiri, Toru ; Aoki, Yasuhiko ; Hoshida, Takeshi ; Ikeuchi, Tadashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-79b387c192eaabf40cab702503b377106492bd30adff5b3e74aea0db0bbbd9623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptive optics</topic><topic>All-optical networks</topic><topic>Coherent communications</topic><topic>Computer simulation</topic><topic>Fiber nonlinear optics</topic><topic>Finite element method</topic><topic>Impairment</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Optical amplifiers</topic><topic>Optical communication</topic><topic>Optical fiber communications</topic><topic>Optical fiber networks</topic><topic>Optical fibers</topic><topic>Optical transmission modeling</topic><topic>Parameter estimation</topic><topic>Regenerators</topic><topic>Signal quality</topic><topic>Systems design</topic><topic>Transponders</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bouda, Martin</creatorcontrib><creatorcontrib>Oda, Shoichiro</creatorcontrib><creatorcontrib>Vassilieva, Olga</creatorcontrib><creatorcontrib>Miyabe, Masatake</creatorcontrib><creatorcontrib>Yoshida, Setsuo</creatorcontrib><creatorcontrib>Katagiri, Toru</creatorcontrib><creatorcontrib>Aoki, Yasuhiko</creatorcontrib><creatorcontrib>Hoshida, Takeshi</creatorcontrib><creatorcontrib>Ikeuchi, Tadashi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of optical communications and networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bouda, Martin</au><au>Oda, Shoichiro</au><au>Vassilieva, Olga</au><au>Miyabe, Masatake</au><au>Yoshida, Setsuo</au><au>Katagiri, Toru</au><au>Aoki, Yasuhiko</au><au>Hoshida, Takeshi</au><au>Ikeuchi, Tadashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate prediction of quality of transmission based on a dynamically configurable optical impairment model</atitle><jtitle>Journal of optical communications and networking</jtitle><stitle>jocn</stitle><date>2018-01</date><risdate>2018</risdate><volume>10</volume><issue>1</issue><spage>A102</spage><epage>A109</epage><pages>A102-A109</pages><issn>1943-0620</issn><eissn>1943-0639</eissn><coden>JOCNBB</coden><abstract>We have proposed a dynamically configurable and fast optical impairment model for the abstraction of the optical physical layer, enabling new capabilities such as indirect estimation of physical operating parameters in multivendor networks based on pre-FEC BER information and machine learning. BER is commonly reported by deployed coherent transponders; therefore, this scheme does not increase hardware cost. The estimated parameters can subsequently be used to predict optical signal quality at the receiver of not-already-established optical connections more accurately than possible based on the limited amount of information available at the time of offline system design. The higher accuracy and certainty reduce the required amount of required system margin that must be allocated to guarantee reliable optical connectivity. The remaining margin can then be applied toward increased transmission capacity, or a reduced number of regenerators in the network. We demonstrate the quality of transmission prediction experimentally in an optical mesh network with 0.6 dB Q-factor accuracy, and quantify the benefit in terms of network capacity gain in metro networks by impairment-aware network simulation.</abstract><cop>Piscataway</cop><pub>Optica Publishing Group</pub><doi>10.1364/JOCN.10.00A102</doi><orcidid>https://orcid.org/0000-0003-4689-2641</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1943-0620
ispartof Journal of optical communications and networking, 2018-01, Vol.10 (1), p.A102-A109
issn 1943-0620
1943-0639
language eng
recordid cdi_crossref_primary_10_1364_JOCN_10_00A102
source IEEE Electronic Library (IEL)
subjects Adaptive optics
All-optical networks
Coherent communications
Computer simulation
Fiber nonlinear optics
Finite element method
Impairment
Machine learning
Mathematical models
Optical amplifiers
Optical communication
Optical fiber communications
Optical fiber networks
Optical fibers
Optical transmission modeling
Parameter estimation
Regenerators
Signal quality
Systems design
Transponders
title Accurate prediction of quality of transmission based on a dynamically configurable optical impairment model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A03%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20prediction%20of%20quality%20of%20transmission%20based%20on%20a%20dynamically%20configurable%20optical%20impairment%20model&rft.jtitle=Journal%20of%20optical%20communications%20and%20networking&rft.au=Bouda,%20Martin&rft.date=2018-01&rft.volume=10&rft.issue=1&rft.spage=A102&rft.epage=A109&rft.pages=A102-A109&rft.issn=1943-0620&rft.eissn=1943-0639&rft.coden=JOCNBB&rft_id=info:doi/10.1364/JOCN.10.00A102&rft_dat=%3Cproquest_RIE%3E2084338021%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2084338021&rft_id=info:pmid/&rft_ieee_id=8273272&rfr_iscdi=true