Accurate prediction of quality of transmission based on a dynamically configurable optical impairment model
We have proposed a dynamically configurable and fast optical impairment model for the abstraction of the optical physical layer, enabling new capabilities such as indirect estimation of physical operating parameters in multivendor networks based on pre-FEC BER information and machine learning. BER i...
Gespeichert in:
Veröffentlicht in: | Journal of optical communications and networking 2018-01, Vol.10 (1), p.A102-A109 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | A109 |
---|---|
container_issue | 1 |
container_start_page | A102 |
container_title | Journal of optical communications and networking |
container_volume | 10 |
creator | Bouda, Martin Oda, Shoichiro Vassilieva, Olga Miyabe, Masatake Yoshida, Setsuo Katagiri, Toru Aoki, Yasuhiko Hoshida, Takeshi Ikeuchi, Tadashi |
description | We have proposed a dynamically configurable and fast optical impairment model for the abstraction of the optical physical layer, enabling new capabilities such as indirect estimation of physical operating parameters in multivendor networks based on pre-FEC BER information and machine learning. BER is commonly reported by deployed coherent transponders; therefore, this scheme does not increase hardware cost. The estimated parameters can subsequently be used to predict optical signal quality at the receiver of not-already-established optical connections more accurately than possible based on the limited amount of information available at the time of offline system design. The higher accuracy and certainty reduce the required amount of required system margin that must be allocated to guarantee reliable optical connectivity. The remaining margin can then be applied toward increased transmission capacity, or a reduced number of regenerators in the network. We demonstrate the quality of transmission prediction experimentally in an optical mesh network with 0.6 dB Q-factor accuracy, and quantify the benefit in terms of network capacity gain in metro networks by impairment-aware network simulation. |
doi_str_mv | 10.1364/JOCN.10.00A102 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1364_JOCN_10_00A102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8273272</ieee_id><sourcerecordid>2084338021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-79b387c192eaabf40cab702503b377106492bd30adff5b3e74aea0db0bbbd9623</originalsourceid><addsrcrecordid>eNo9UMtOwzAQtBBIlMKVCxdLnFvWdhonx6riqYpe4BytH0EuedV2Dvl7EgX1tDO7M7PSEHLPYM1Emjx9HHaf65EAbBnwC7JgeSJWkIr88ow5XJObEI4AqWRssyC_W617j9HSzlvjdHRtQ9uSnnqsXBwmGD02oXYhTCeFwRo6AqRmaLB2GqtqoLptSvczBqnK0raL05q6ukPna9tEWrfGVrfkqsQq2Lv_uSTfL89fu7fV_vD6vtvuV1oIHlcyVyKTmuXcIqoyAY1KAt-AUEJKBmmSc2UEoCnLjRJWJmgRjAKllMlTLpbkcc7tfHvqbYjFse19M74sOGSJEBlwNqrWs0r7NgRvy6LzrkY_FAyKqdBiKnQic6Gj4WE2OGvtWZxxKbjk4g_mCnOy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084338021</pqid></control><display><type>article</type><title>Accurate prediction of quality of transmission based on a dynamically configurable optical impairment model</title><source>IEEE Electronic Library (IEL)</source><creator>Bouda, Martin ; Oda, Shoichiro ; Vassilieva, Olga ; Miyabe, Masatake ; Yoshida, Setsuo ; Katagiri, Toru ; Aoki, Yasuhiko ; Hoshida, Takeshi ; Ikeuchi, Tadashi</creator><creatorcontrib>Bouda, Martin ; Oda, Shoichiro ; Vassilieva, Olga ; Miyabe, Masatake ; Yoshida, Setsuo ; Katagiri, Toru ; Aoki, Yasuhiko ; Hoshida, Takeshi ; Ikeuchi, Tadashi</creatorcontrib><description>We have proposed a dynamically configurable and fast optical impairment model for the abstraction of the optical physical layer, enabling new capabilities such as indirect estimation of physical operating parameters in multivendor networks based on pre-FEC BER information and machine learning. BER is commonly reported by deployed coherent transponders; therefore, this scheme does not increase hardware cost. The estimated parameters can subsequently be used to predict optical signal quality at the receiver of not-already-established optical connections more accurately than possible based on the limited amount of information available at the time of offline system design. The higher accuracy and certainty reduce the required amount of required system margin that must be allocated to guarantee reliable optical connectivity. The remaining margin can then be applied toward increased transmission capacity, or a reduced number of regenerators in the network. We demonstrate the quality of transmission prediction experimentally in an optical mesh network with 0.6 dB Q-factor accuracy, and quantify the benefit in terms of network capacity gain in metro networks by impairment-aware network simulation.</description><identifier>ISSN: 1943-0620</identifier><identifier>EISSN: 1943-0639</identifier><identifier>DOI: 10.1364/JOCN.10.00A102</identifier><identifier>CODEN: JOCNBB</identifier><language>eng</language><publisher>Piscataway: Optica Publishing Group</publisher><subject>Adaptive optics ; All-optical networks ; Coherent communications ; Computer simulation ; Fiber nonlinear optics ; Finite element method ; Impairment ; Machine learning ; Mathematical models ; Optical amplifiers ; Optical communication ; Optical fiber communications ; Optical fiber networks ; Optical fibers ; Optical transmission modeling ; Parameter estimation ; Regenerators ; Signal quality ; Systems design ; Transponders</subject><ispartof>Journal of optical communications and networking, 2018-01, Vol.10 (1), p.A102-A109</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-79b387c192eaabf40cab702503b377106492bd30adff5b3e74aea0db0bbbd9623</citedby><cites>FETCH-LOGICAL-c332t-79b387c192eaabf40cab702503b377106492bd30adff5b3e74aea0db0bbbd9623</cites><orcidid>0000-0003-4689-2641</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8273272$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8273272$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bouda, Martin</creatorcontrib><creatorcontrib>Oda, Shoichiro</creatorcontrib><creatorcontrib>Vassilieva, Olga</creatorcontrib><creatorcontrib>Miyabe, Masatake</creatorcontrib><creatorcontrib>Yoshida, Setsuo</creatorcontrib><creatorcontrib>Katagiri, Toru</creatorcontrib><creatorcontrib>Aoki, Yasuhiko</creatorcontrib><creatorcontrib>Hoshida, Takeshi</creatorcontrib><creatorcontrib>Ikeuchi, Tadashi</creatorcontrib><title>Accurate prediction of quality of transmission based on a dynamically configurable optical impairment model</title><title>Journal of optical communications and networking</title><addtitle>jocn</addtitle><description>We have proposed a dynamically configurable and fast optical impairment model for the abstraction of the optical physical layer, enabling new capabilities such as indirect estimation of physical operating parameters in multivendor networks based on pre-FEC BER information and machine learning. BER is commonly reported by deployed coherent transponders; therefore, this scheme does not increase hardware cost. The estimated parameters can subsequently be used to predict optical signal quality at the receiver of not-already-established optical connections more accurately than possible based on the limited amount of information available at the time of offline system design. The higher accuracy and certainty reduce the required amount of required system margin that must be allocated to guarantee reliable optical connectivity. The remaining margin can then be applied toward increased transmission capacity, or a reduced number of regenerators in the network. We demonstrate the quality of transmission prediction experimentally in an optical mesh network with 0.6 dB Q-factor accuracy, and quantify the benefit in terms of network capacity gain in metro networks by impairment-aware network simulation.</description><subject>Adaptive optics</subject><subject>All-optical networks</subject><subject>Coherent communications</subject><subject>Computer simulation</subject><subject>Fiber nonlinear optics</subject><subject>Finite element method</subject><subject>Impairment</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Optical amplifiers</subject><subject>Optical communication</subject><subject>Optical fiber communications</subject><subject>Optical fiber networks</subject><subject>Optical fibers</subject><subject>Optical transmission modeling</subject><subject>Parameter estimation</subject><subject>Regenerators</subject><subject>Signal quality</subject><subject>Systems design</subject><subject>Transponders</subject><issn>1943-0620</issn><issn>1943-0639</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UMtOwzAQtBBIlMKVCxdLnFvWdhonx6riqYpe4BytH0EuedV2Dvl7EgX1tDO7M7PSEHLPYM1Emjx9HHaf65EAbBnwC7JgeSJWkIr88ow5XJObEI4AqWRssyC_W617j9HSzlvjdHRtQ9uSnnqsXBwmGD02oXYhTCeFwRo6AqRmaLB2GqtqoLptSvczBqnK0raL05q6ukPna9tEWrfGVrfkqsQq2Lv_uSTfL89fu7fV_vD6vtvuV1oIHlcyVyKTmuXcIqoyAY1KAt-AUEJKBmmSc2UEoCnLjRJWJmgRjAKllMlTLpbkcc7tfHvqbYjFse19M74sOGSJEBlwNqrWs0r7NgRvy6LzrkY_FAyKqdBiKnQic6Gj4WE2OGvtWZxxKbjk4g_mCnOy</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Bouda, Martin</creator><creator>Oda, Shoichiro</creator><creator>Vassilieva, Olga</creator><creator>Miyabe, Masatake</creator><creator>Yoshida, Setsuo</creator><creator>Katagiri, Toru</creator><creator>Aoki, Yasuhiko</creator><creator>Hoshida, Takeshi</creator><creator>Ikeuchi, Tadashi</creator><general>Optica Publishing Group</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4689-2641</orcidid></search><sort><creationdate>201801</creationdate><title>Accurate prediction of quality of transmission based on a dynamically configurable optical impairment model</title><author>Bouda, Martin ; Oda, Shoichiro ; Vassilieva, Olga ; Miyabe, Masatake ; Yoshida, Setsuo ; Katagiri, Toru ; Aoki, Yasuhiko ; Hoshida, Takeshi ; Ikeuchi, Tadashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-79b387c192eaabf40cab702503b377106492bd30adff5b3e74aea0db0bbbd9623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptive optics</topic><topic>All-optical networks</topic><topic>Coherent communications</topic><topic>Computer simulation</topic><topic>Fiber nonlinear optics</topic><topic>Finite element method</topic><topic>Impairment</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Optical amplifiers</topic><topic>Optical communication</topic><topic>Optical fiber communications</topic><topic>Optical fiber networks</topic><topic>Optical fibers</topic><topic>Optical transmission modeling</topic><topic>Parameter estimation</topic><topic>Regenerators</topic><topic>Signal quality</topic><topic>Systems design</topic><topic>Transponders</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bouda, Martin</creatorcontrib><creatorcontrib>Oda, Shoichiro</creatorcontrib><creatorcontrib>Vassilieva, Olga</creatorcontrib><creatorcontrib>Miyabe, Masatake</creatorcontrib><creatorcontrib>Yoshida, Setsuo</creatorcontrib><creatorcontrib>Katagiri, Toru</creatorcontrib><creatorcontrib>Aoki, Yasuhiko</creatorcontrib><creatorcontrib>Hoshida, Takeshi</creatorcontrib><creatorcontrib>Ikeuchi, Tadashi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of optical communications and networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bouda, Martin</au><au>Oda, Shoichiro</au><au>Vassilieva, Olga</au><au>Miyabe, Masatake</au><au>Yoshida, Setsuo</au><au>Katagiri, Toru</au><au>Aoki, Yasuhiko</au><au>Hoshida, Takeshi</au><au>Ikeuchi, Tadashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate prediction of quality of transmission based on a dynamically configurable optical impairment model</atitle><jtitle>Journal of optical communications and networking</jtitle><stitle>jocn</stitle><date>2018-01</date><risdate>2018</risdate><volume>10</volume><issue>1</issue><spage>A102</spage><epage>A109</epage><pages>A102-A109</pages><issn>1943-0620</issn><eissn>1943-0639</eissn><coden>JOCNBB</coden><abstract>We have proposed a dynamically configurable and fast optical impairment model for the abstraction of the optical physical layer, enabling new capabilities such as indirect estimation of physical operating parameters in multivendor networks based on pre-FEC BER information and machine learning. BER is commonly reported by deployed coherent transponders; therefore, this scheme does not increase hardware cost. The estimated parameters can subsequently be used to predict optical signal quality at the receiver of not-already-established optical connections more accurately than possible based on the limited amount of information available at the time of offline system design. The higher accuracy and certainty reduce the required amount of required system margin that must be allocated to guarantee reliable optical connectivity. The remaining margin can then be applied toward increased transmission capacity, or a reduced number of regenerators in the network. We demonstrate the quality of transmission prediction experimentally in an optical mesh network with 0.6 dB Q-factor accuracy, and quantify the benefit in terms of network capacity gain in metro networks by impairment-aware network simulation.</abstract><cop>Piscataway</cop><pub>Optica Publishing Group</pub><doi>10.1364/JOCN.10.00A102</doi><orcidid>https://orcid.org/0000-0003-4689-2641</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1943-0620 |
ispartof | Journal of optical communications and networking, 2018-01, Vol.10 (1), p.A102-A109 |
issn | 1943-0620 1943-0639 |
language | eng |
recordid | cdi_crossref_primary_10_1364_JOCN_10_00A102 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive optics All-optical networks Coherent communications Computer simulation Fiber nonlinear optics Finite element method Impairment Machine learning Mathematical models Optical amplifiers Optical communication Optical fiber communications Optical fiber networks Optical fibers Optical transmission modeling Parameter estimation Regenerators Signal quality Systems design Transponders |
title | Accurate prediction of quality of transmission based on a dynamically configurable optical impairment model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A03%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20prediction%20of%20quality%20of%20transmission%20based%20on%20a%20dynamically%20configurable%20optical%20impairment%20model&rft.jtitle=Journal%20of%20optical%20communications%20and%20networking&rft.au=Bouda,%20Martin&rft.date=2018-01&rft.volume=10&rft.issue=1&rft.spage=A102&rft.epage=A109&rft.pages=A102-A109&rft.issn=1943-0620&rft.eissn=1943-0639&rft.coden=JOCNBB&rft_id=info:doi/10.1364/JOCN.10.00A102&rft_dat=%3Cproquest_RIE%3E2084338021%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2084338021&rft_id=info:pmid/&rft_ieee_id=8273272&rfr_iscdi=true |