WEYL TYPE THEOREMS FOR POSINORMAL OPERATORS

Let be a bounded linear operator acting on infinite dimensional separable Hubert space H. The study of operators satisfying Weyl's theorem, Browder's theorem, the SVEP and Bishop's property is of significant interest and is currently being done by a number of mathematicians around the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical proceedings of the Royal Irish Academy 2008-11, Vol.108A (1), p.69-79
Hauptverfasser: Mecheri, S., Seddik, Makhlouf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 79
container_issue 1
container_start_page 69
container_title Mathematical proceedings of the Royal Irish Academy
container_volume 108A
creator Mecheri, S.
Seddik, Makhlouf
description Let be a bounded linear operator acting on infinite dimensional separable Hubert space H. The study of operators satisfying Weyl's theorem, Browder's theorem, the SVEP and Bishop's property is of significant interest and is currently being done by a number of mathematicians around the world. It is known that Weyl's theorem holds for M-hyponormal operators, but does not hold for dominant operators. Hence it is an interesting problem to seek a condition that implies Weyl's theorem for dominant operators. Ho Jeon et al. proved that if A is dominant and satisfies σ((A - λI)|M) = {0} ⇒ (A -λI)\M for every M ∈ Lat(A), then Weyl's theorem holds for A. Recently Cao showed that the generalized a-Weyl's theorem holds for ƒ(A), where ƒ is an analytic function defined in an open neighbourhood of σ(A) in the case where A* is p-hyponormal or M-hyponormal. Also Aiena showed that a-Weyl's theorem holds for some classes of operators. In this paper we prove that if A* is conditionally totally posinormal (with certain condition) or totally posinormal, then the generalized a-Weyl's theorem holds for A and for ƒ(A), where ƒ is an analytic function defined in an open neighbourhood of σ(A).
doi_str_mv 10.1353/mpr.2008.0022
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1353_mpr_2008_0022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40656970</jstor_id><sourcerecordid>40656970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1494-f411ff33dd50c29112e7632bb1260195b61eb4c8b9f199090d7646925dd575e83</originalsourceid><addsrcrecordid>eNo9UMFKw0AQXUTBWj16FHKX1JndzW72WEpqC6lbkoj0tDTpBgzGlN324N-7oeJc5jG8NzPvEfKIMEOWsJf-6GYUIJ0BUHpFJgGrOGC8JhNkisUSlbwld953YZpKTifk-SPb5VG122ZRtcp0kW3KaKmLaKvL9ZsuNvM80tusmFe6KO_JTbv_8vbhr0_J-zKrFqs416_rxTyPG-SKxy1HbFvGDocEGqoQqZWC0bpGKgBVUgu0NW_SWrWoFCg4SMGFokkQyMSmbEriy97GDd4725qj--z37scgmNGpCU7N6NSMTgOfX_hHN3S2OfVnb003nN13-NKkPA1lyjGNMQxIEUAoHmRPF1nnT4P7v8FBJEJJYL_ol1qG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>WEYL TYPE THEOREMS FOR POSINORMAL OPERATORS</title><source>JSTOR Archive Collection A-Z Listing</source><creator>Mecheri, S. ; Seddik, Makhlouf</creator><creatorcontrib>Mecheri, S. ; Seddik, Makhlouf</creatorcontrib><description>Let be a bounded linear operator acting on infinite dimensional separable Hubert space H. The study of operators satisfying Weyl's theorem, Browder's theorem, the SVEP and Bishop's property is of significant interest and is currently being done by a number of mathematicians around the world. It is known that Weyl's theorem holds for M-hyponormal operators, but does not hold for dominant operators. Hence it is an interesting problem to seek a condition that implies Weyl's theorem for dominant operators. Ho Jeon et al. proved that if A is dominant and satisfies σ((A - λI)|M) = {0} ⇒ (A -λI)\M for every M ∈ Lat(A), then Weyl's theorem holds for A. Recently Cao showed that the generalized a-Weyl's theorem holds for ƒ(A), where ƒ is an analytic function defined in an open neighbourhood of σ(A) in the case where A* is p-hyponormal or M-hyponormal. Also Aiena showed that a-Weyl's theorem holds for some classes of operators. In this paper we prove that if A* is conditionally totally posinormal (with certain condition) or totally posinormal, then the generalized a-Weyl's theorem holds for A and for ƒ(A), where ƒ is an analytic function defined in an open neighbourhood of σ(A).</description><identifier>ISSN: 1393-7197</identifier><identifier>ISSN: 2009-0021</identifier><identifier>EISSN: 2009-0021</identifier><identifier>DOI: 10.1353/mpr.2008.0022</identifier><language>eng</language><publisher>Royal Irish Academy</publisher><subject>Algebra ; Analytic functions ; College mathematics ; Fredholm equations ; Integers ; Linear transformations ; Mathematical functions ; Mathematical theorems ; Spectral index ; Value theorems</subject><ispartof>Mathematical proceedings of the Royal Irish Academy, 2008-11, Vol.108A (1), p.69-79</ispartof><rights>Royal Irish Academy</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1494-f411ff33dd50c29112e7632bb1260195b61eb4c8b9f199090d7646925dd575e83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40656970$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40656970$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,58017,58250</link.rule.ids></links><search><creatorcontrib>Mecheri, S.</creatorcontrib><creatorcontrib>Seddik, Makhlouf</creatorcontrib><title>WEYL TYPE THEOREMS FOR POSINORMAL OPERATORS</title><title>Mathematical proceedings of the Royal Irish Academy</title><description>Let be a bounded linear operator acting on infinite dimensional separable Hubert space H. The study of operators satisfying Weyl's theorem, Browder's theorem, the SVEP and Bishop's property is of significant interest and is currently being done by a number of mathematicians around the world. It is known that Weyl's theorem holds for M-hyponormal operators, but does not hold for dominant operators. Hence it is an interesting problem to seek a condition that implies Weyl's theorem for dominant operators. Ho Jeon et al. proved that if A is dominant and satisfies σ((A - λI)|M) = {0} ⇒ (A -λI)\M for every M ∈ Lat(A), then Weyl's theorem holds for A. Recently Cao showed that the generalized a-Weyl's theorem holds for ƒ(A), where ƒ is an analytic function defined in an open neighbourhood of σ(A) in the case where A* is p-hyponormal or M-hyponormal. Also Aiena showed that a-Weyl's theorem holds for some classes of operators. In this paper we prove that if A* is conditionally totally posinormal (with certain condition) or totally posinormal, then the generalized a-Weyl's theorem holds for A and for ƒ(A), where ƒ is an analytic function defined in an open neighbourhood of σ(A).</description><subject>Algebra</subject><subject>Analytic functions</subject><subject>College mathematics</subject><subject>Fredholm equations</subject><subject>Integers</subject><subject>Linear transformations</subject><subject>Mathematical functions</subject><subject>Mathematical theorems</subject><subject>Spectral index</subject><subject>Value theorems</subject><issn>1393-7197</issn><issn>2009-0021</issn><issn>2009-0021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNo9UMFKw0AQXUTBWj16FHKX1JndzW72WEpqC6lbkoj0tDTpBgzGlN324N-7oeJc5jG8NzPvEfKIMEOWsJf-6GYUIJ0BUHpFJgGrOGC8JhNkisUSlbwld953YZpKTifk-SPb5VG122ZRtcp0kW3KaKmLaKvL9ZsuNvM80tusmFe6KO_JTbv_8vbhr0_J-zKrFqs416_rxTyPG-SKxy1HbFvGDocEGqoQqZWC0bpGKgBVUgu0NW_SWrWoFCg4SMGFokkQyMSmbEriy97GDd4725qj--z37scgmNGpCU7N6NSMTgOfX_hHN3S2OfVnb003nN13-NKkPA1lyjGNMQxIEUAoHmRPF1nnT4P7v8FBJEJJYL_ol1qG</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>Mecheri, S.</creator><creator>Seddik, Makhlouf</creator><general>Royal Irish Academy</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20081101</creationdate><title>WEYL TYPE THEOREMS FOR POSINORMAL OPERATORS</title><author>Mecheri, S. ; Seddik, Makhlouf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1494-f411ff33dd50c29112e7632bb1260195b61eb4c8b9f199090d7646925dd575e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algebra</topic><topic>Analytic functions</topic><topic>College mathematics</topic><topic>Fredholm equations</topic><topic>Integers</topic><topic>Linear transformations</topic><topic>Mathematical functions</topic><topic>Mathematical theorems</topic><topic>Spectral index</topic><topic>Value theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mecheri, S.</creatorcontrib><creatorcontrib>Seddik, Makhlouf</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematical proceedings of the Royal Irish Academy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mecheri, S.</au><au>Seddik, Makhlouf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>WEYL TYPE THEOREMS FOR POSINORMAL OPERATORS</atitle><jtitle>Mathematical proceedings of the Royal Irish Academy</jtitle><date>2008-11-01</date><risdate>2008</risdate><volume>108A</volume><issue>1</issue><spage>69</spage><epage>79</epage><pages>69-79</pages><issn>1393-7197</issn><issn>2009-0021</issn><eissn>2009-0021</eissn><abstract>Let be a bounded linear operator acting on infinite dimensional separable Hubert space H. The study of operators satisfying Weyl's theorem, Browder's theorem, the SVEP and Bishop's property is of significant interest and is currently being done by a number of mathematicians around the world. It is known that Weyl's theorem holds for M-hyponormal operators, but does not hold for dominant operators. Hence it is an interesting problem to seek a condition that implies Weyl's theorem for dominant operators. Ho Jeon et al. proved that if A is dominant and satisfies σ((A - λI)|M) = {0} ⇒ (A -λI)\M for every M ∈ Lat(A), then Weyl's theorem holds for A. Recently Cao showed that the generalized a-Weyl's theorem holds for ƒ(A), where ƒ is an analytic function defined in an open neighbourhood of σ(A) in the case where A* is p-hyponormal or M-hyponormal. Also Aiena showed that a-Weyl's theorem holds for some classes of operators. In this paper we prove that if A* is conditionally totally posinormal (with certain condition) or totally posinormal, then the generalized a-Weyl's theorem holds for A and for ƒ(A), where ƒ is an analytic function defined in an open neighbourhood of σ(A).</abstract><pub>Royal Irish Academy</pub><doi>10.1353/mpr.2008.0022</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1393-7197
ispartof Mathematical proceedings of the Royal Irish Academy, 2008-11, Vol.108A (1), p.69-79
issn 1393-7197
2009-0021
2009-0021
language eng
recordid cdi_crossref_primary_10_1353_mpr_2008_0022
source JSTOR Archive Collection A-Z Listing
subjects Algebra
Analytic functions
College mathematics
Fredholm equations
Integers
Linear transformations
Mathematical functions
Mathematical theorems
Spectral index
Value theorems
title WEYL TYPE THEOREMS FOR POSINORMAL OPERATORS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A18%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=WEYL%20TYPE%20THEOREMS%20FOR%20POSINORMAL%20OPERATORS&rft.jtitle=Mathematical%20proceedings%20of%20the%20Royal%20Irish%20Academy&rft.au=Mecheri,%20S.&rft.date=2008-11-01&rft.volume=108A&rft.issue=1&rft.spage=69&rft.epage=79&rft.pages=69-79&rft.issn=1393-7197&rft.eissn=2009-0021&rft_id=info:doi/10.1353/mpr.2008.0022&rft_dat=%3Cjstor_cross%3E40656970%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=40656970&rfr_iscdi=true