Development of microporosity in clinochlore upon heating

The “modified chlorite structure” forms by the dehydroxylation of the interlayer octahedral sheet of magnesian chlorite at around 500°C and results in a structure with a basal spacing near 27 Â (Brindley and Chang 1974). This process involves drastic textural modifications as indicated by gas adsorp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clays and clay minerals 1994-12, Vol.42 (6), p.679-688
Hauptverfasser: VILLIERAS, F, YVON, J, CASES, J. M, DE DONATO, P, LHOTE, F, BAEZA, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 688
container_issue 6
container_start_page 679
container_title Clays and clay minerals
container_volume 42
creator VILLIERAS, F
YVON, J
CASES, J. M
DE DONATO, P
LHOTE, F
BAEZA, R
description The “modified chlorite structure” forms by the dehydroxylation of the interlayer octahedral sheet of magnesian chlorite at around 500°C and results in a structure with a basal spacing near 27 Â (Brindley and Chang 1974). This process involves drastic textural modifications as indicated by gas adsorption experiments which reveal the formation of structural micropores. Infrared spectroscopy as well as thermogravimetry and mass spectrometric analysis show that these micropores are filled with molecular atmospheric water, carbon dioxide, nitrogen, argon and hydrocarbons which condense once the samples cool down. A high temperature treatment is needed in order to release the different phases. A heterogeneous dehydroxylation mechanism is proposed in which micropores are formed in donor regions and magnesium and oxygen are concentrated in acceptor regions. This leads to a 27 Å structure with micropore zones and enriched interlayer oxide zones alternating along the z-axis of the mineral.
doi_str_mv 10.1346/ccmn.1994.0420604
format Article
fullrecord <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1346_CCMN_1994_0420604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3440212</sourcerecordid><originalsourceid>FETCH-LOGICAL-a361t-6423d791a392d1776f33c24a0c3726efee7cc18bf5fc4f8e67a0a2dd7f4ba2fd3</originalsourceid><addsrcrecordid>eNo9j0tLxDAYRYMoWEd_gLss3LZ-eTRpl1KfMOpG1yGTJk6kTUpShfn3dpjB1YUL53IPQtcEKsK4uDVmDBVpW14BpyCAn6CC1DUtGybkKSoAoC2bpT9HFzl_A1DBGS1Qc29_7RCn0YYZR4dHb1KcYorZzzvsAzaDD9Fsh5gs_pliwFurZx--LtGZ00O2V8dcoc_Hh4_uuVy_P710d-tSM0HmUnDKetkSzVraEymFY8xQrsEwSYV11kpjSLNxtTPcNVZIDZr2vXR8o6nr2QqRw-7yK-dknZqSH3XaKQJqr6667vVN7dXVUX1hbg7MpLPRg0s6GJ__QcY5UELZH5-FWmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Development of microporosity in clinochlore upon heating</title><source>SpringerLink Journals - AutoHoldings</source><creator>VILLIERAS, F ; YVON, J ; CASES, J. M ; DE DONATO, P ; LHOTE, F ; BAEZA, R</creator><creatorcontrib>VILLIERAS, F ; YVON, J ; CASES, J. M ; DE DONATO, P ; LHOTE, F ; BAEZA, R</creatorcontrib><description>The “modified chlorite structure” forms by the dehydroxylation of the interlayer octahedral sheet of magnesian chlorite at around 500°C and results in a structure with a basal spacing near 27 Â (Brindley and Chang 1974). This process involves drastic textural modifications as indicated by gas adsorption experiments which reveal the formation of structural micropores. Infrared spectroscopy as well as thermogravimetry and mass spectrometric analysis show that these micropores are filled with molecular atmospheric water, carbon dioxide, nitrogen, argon and hydrocarbons which condense once the samples cool down. A high temperature treatment is needed in order to release the different phases. A heterogeneous dehydroxylation mechanism is proposed in which micropores are formed in donor regions and magnesium and oxygen are concentrated in acceptor regions. This leads to a 27 Å structure with micropore zones and enriched interlayer oxide zones alternating along the z-axis of the mineral.</description><identifier>ISSN: 0009-8604</identifier><identifier>EISSN: 1552-8367</identifier><identifier>DOI: 10.1346/ccmn.1994.0420604</identifier><identifier>CODEN: CLCMAB</identifier><language>eng</language><publisher>Boulder, CO: Clay Minerals Society</publisher><subject>Chemistry ; Colloidal state and disperse state ; Exact sciences and technology ; General and physical chemistry ; Porous materials</subject><ispartof>Clays and clay minerals, 1994-12, Vol.42 (6), p.679-688</ispartof><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a361t-6423d791a392d1776f33c24a0c3726efee7cc18bf5fc4f8e67a0a2dd7f4ba2fd3</citedby><cites>FETCH-LOGICAL-a361t-6423d791a392d1776f33c24a0c3726efee7cc18bf5fc4f8e67a0a2dd7f4ba2fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3440212$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>VILLIERAS, F</creatorcontrib><creatorcontrib>YVON, J</creatorcontrib><creatorcontrib>CASES, J. M</creatorcontrib><creatorcontrib>DE DONATO, P</creatorcontrib><creatorcontrib>LHOTE, F</creatorcontrib><creatorcontrib>BAEZA, R</creatorcontrib><title>Development of microporosity in clinochlore upon heating</title><title>Clays and clay minerals</title><description>The “modified chlorite structure” forms by the dehydroxylation of the interlayer octahedral sheet of magnesian chlorite at around 500°C and results in a structure with a basal spacing near 27 Â (Brindley and Chang 1974). This process involves drastic textural modifications as indicated by gas adsorption experiments which reveal the formation of structural micropores. Infrared spectroscopy as well as thermogravimetry and mass spectrometric analysis show that these micropores are filled with molecular atmospheric water, carbon dioxide, nitrogen, argon and hydrocarbons which condense once the samples cool down. A high temperature treatment is needed in order to release the different phases. A heterogeneous dehydroxylation mechanism is proposed in which micropores are formed in donor regions and magnesium and oxygen are concentrated in acceptor regions. This leads to a 27 Å structure with micropore zones and enriched interlayer oxide zones alternating along the z-axis of the mineral.</description><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Porous materials</subject><issn>0009-8604</issn><issn>1552-8367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNo9j0tLxDAYRYMoWEd_gLss3LZ-eTRpl1KfMOpG1yGTJk6kTUpShfn3dpjB1YUL53IPQtcEKsK4uDVmDBVpW14BpyCAn6CC1DUtGybkKSoAoC2bpT9HFzl_A1DBGS1Qc29_7RCn0YYZR4dHb1KcYorZzzvsAzaDD9Fsh5gs_pliwFurZx--LtGZ00O2V8dcoc_Hh4_uuVy_P710d-tSM0HmUnDKetkSzVraEymFY8xQrsEwSYV11kpjSLNxtTPcNVZIDZr2vXR8o6nr2QqRw-7yK-dknZqSH3XaKQJqr6667vVN7dXVUX1hbg7MpLPRg0s6GJ__QcY5UELZH5-FWmw</recordid><startdate>19941201</startdate><enddate>19941201</enddate><creator>VILLIERAS, F</creator><creator>YVON, J</creator><creator>CASES, J. M</creator><creator>DE DONATO, P</creator><creator>LHOTE, F</creator><creator>BAEZA, R</creator><general>Clay Minerals Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19941201</creationdate><title>Development of microporosity in clinochlore upon heating</title><author>VILLIERAS, F ; YVON, J ; CASES, J. M ; DE DONATO, P ; LHOTE, F ; BAEZA, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a361t-6423d791a392d1776f33c24a0c3726efee7cc18bf5fc4f8e67a0a2dd7f4ba2fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Porous materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>VILLIERAS, F</creatorcontrib><creatorcontrib>YVON, J</creatorcontrib><creatorcontrib>CASES, J. M</creatorcontrib><creatorcontrib>DE DONATO, P</creatorcontrib><creatorcontrib>LHOTE, F</creatorcontrib><creatorcontrib>BAEZA, R</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Clays and clay minerals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>VILLIERAS, F</au><au>YVON, J</au><au>CASES, J. M</au><au>DE DONATO, P</au><au>LHOTE, F</au><au>BAEZA, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of microporosity in clinochlore upon heating</atitle><jtitle>Clays and clay minerals</jtitle><date>1994-12-01</date><risdate>1994</risdate><volume>42</volume><issue>6</issue><spage>679</spage><epage>688</epage><pages>679-688</pages><issn>0009-8604</issn><eissn>1552-8367</eissn><coden>CLCMAB</coden><abstract>The “modified chlorite structure” forms by the dehydroxylation of the interlayer octahedral sheet of magnesian chlorite at around 500°C and results in a structure with a basal spacing near 27 Â (Brindley and Chang 1974). This process involves drastic textural modifications as indicated by gas adsorption experiments which reveal the formation of structural micropores. Infrared spectroscopy as well as thermogravimetry and mass spectrometric analysis show that these micropores are filled with molecular atmospheric water, carbon dioxide, nitrogen, argon and hydrocarbons which condense once the samples cool down. A high temperature treatment is needed in order to release the different phases. A heterogeneous dehydroxylation mechanism is proposed in which micropores are formed in donor regions and magnesium and oxygen are concentrated in acceptor regions. This leads to a 27 Å structure with micropore zones and enriched interlayer oxide zones alternating along the z-axis of the mineral.</abstract><cop>Boulder, CO</cop><pub>Clay Minerals Society</pub><doi>10.1346/ccmn.1994.0420604</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0009-8604
ispartof Clays and clay minerals, 1994-12, Vol.42 (6), p.679-688
issn 0009-8604
1552-8367
language eng
recordid cdi_crossref_primary_10_1346_CCMN_1994_0420604
source SpringerLink Journals - AutoHoldings
subjects Chemistry
Colloidal state and disperse state
Exact sciences and technology
General and physical chemistry
Porous materials
title Development of microporosity in clinochlore upon heating
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A14%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20microporosity%20in%20clinochlore%20upon%20heating&rft.jtitle=Clays%20and%20clay%20minerals&rft.au=VILLIERAS,%20F&rft.date=1994-12-01&rft.volume=42&rft.issue=6&rft.spage=679&rft.epage=688&rft.pages=679-688&rft.issn=0009-8604&rft.eissn=1552-8367&rft.coden=CLCMAB&rft_id=info:doi/10.1346/ccmn.1994.0420604&rft_dat=%3Cpascalfrancis_cross%3E3440212%3C/pascalfrancis_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true