Generalization of pinching operation to binary matroids

In this paper, we generalize the pinching operation on two edges of graphs to binary matroids and investigate some of its basic properties. For $n\geq 2$, the matroid that is obtained from an $n$-connected matroid by this operation is a $k$-connected matroid with $k\in\{2,3,4\}$ or is a disconnected...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algebra combinatorics discrete structures and applications 2020-09, Vol.7 (3), p.247-258
Hauptverfasser: GHORBANİ, Vahid, AZADİ, Ghodratollah, AZANCHİLER, Habib
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 258
container_issue 3
container_start_page 247
container_title Journal of algebra combinatorics discrete structures and applications
container_volume 7
creator GHORBANİ, Vahid
AZADİ, Ghodratollah
AZANCHİLER, Habib
description In this paper, we generalize the pinching operation on two edges of graphs to binary matroids and investigate some of its basic properties. For $n\geq 2$, the matroid that is obtained from an $n$-connected matroid by this operation is a $k$-connected matroid with $k\in\{2,3,4\}$ or is a disconnected matroid. We find conditions to guarantee this $k$. Moreover, we show that Eulerian binary matroids are characterized by this operation and we also provide some interesting applications of this operation.
doi_str_mv 10.13069/jacodesmath.784992
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_13069_jacodesmath_784992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_13069_jacodesmath_784992</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1592-d30fdfd8c3224b4ecdd95e4b4ec7ecc7a7f4ee6d56dd66484abec583f09df77a3</originalsourceid><addsrcrecordid>eNpNj01LAzEQhoMoWGp_gZf9A1uTTTYfRylahUIvCt6WbGZiU9pkSfaiv95l66Gn9-EdmJmHkEdG14xTaZ6O1iXAcrbjYa20MKa5IYuGCV1rrr9ur_ierEo5UkqZkoIbvSBqixGzPYVfO4YUq-SrIUR3CPG7SsM0mdsxVX2INv9U05GcApQHcuftqeDqP5fk8_XlY_NW7_bb983zrnasNU0NnHrwoB1vGtELdACmxZkUOqes8gJRQisBpBRa2B5dq7mnBrxSli8Jv-x1OZWS0XdDDufpk47RbtbvrvS7iz7_A4JSU3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Generalization of pinching operation to binary matroids</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>GHORBANİ, Vahid ; AZADİ, Ghodratollah ; AZANCHİLER, Habib</creator><creatorcontrib>GHORBANİ, Vahid ; AZADİ, Ghodratollah ; AZANCHİLER, Habib</creatorcontrib><description>In this paper, we generalize the pinching operation on two edges of graphs to binary matroids and investigate some of its basic properties. For $n\geq 2$, the matroid that is obtained from an $n$-connected matroid by this operation is a $k$-connected matroid with $k\in\{2,3,4\}$ or is a disconnected matroid. We find conditions to guarantee this $k$. Moreover, we show that Eulerian binary matroids are characterized by this operation and we also provide some interesting applications of this operation.</description><identifier>ISSN: 2148-838X</identifier><identifier>EISSN: 2148-838X</identifier><identifier>DOI: 10.13069/jacodesmath.784992</identifier><language>eng</language><ispartof>Journal of algebra combinatorics discrete structures and applications, 2020-09, Vol.7 (3), p.247-258</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1592-d30fdfd8c3224b4ecdd95e4b4ec7ecc7a7f4ee6d56dd66484abec583f09df77a3</cites><orcidid>0000-0002-2949-3836 ; 0000-0002-7301-6973 ; 0000-0002-1807-4732</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>GHORBANİ, Vahid</creatorcontrib><creatorcontrib>AZADİ, Ghodratollah</creatorcontrib><creatorcontrib>AZANCHİLER, Habib</creatorcontrib><title>Generalization of pinching operation to binary matroids</title><title>Journal of algebra combinatorics discrete structures and applications</title><description>In this paper, we generalize the pinching operation on two edges of graphs to binary matroids and investigate some of its basic properties. For $n\geq 2$, the matroid that is obtained from an $n$-connected matroid by this operation is a $k$-connected matroid with $k\in\{2,3,4\}$ or is a disconnected matroid. We find conditions to guarantee this $k$. Moreover, we show that Eulerian binary matroids are characterized by this operation and we also provide some interesting applications of this operation.</description><issn>2148-838X</issn><issn>2148-838X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNj01LAzEQhoMoWGp_gZf9A1uTTTYfRylahUIvCt6WbGZiU9pkSfaiv95l66Gn9-EdmJmHkEdG14xTaZ6O1iXAcrbjYa20MKa5IYuGCV1rrr9ur_ierEo5UkqZkoIbvSBqixGzPYVfO4YUq-SrIUR3CPG7SsM0mdsxVX2INv9U05GcApQHcuftqeDqP5fk8_XlY_NW7_bb983zrnasNU0NnHrwoB1vGtELdACmxZkUOqes8gJRQisBpBRa2B5dq7mnBrxSli8Jv-x1OZWS0XdDDufpk47RbtbvrvS7iz7_A4JSU3g</recordid><startdate>20200906</startdate><enddate>20200906</enddate><creator>GHORBANİ, Vahid</creator><creator>AZADİ, Ghodratollah</creator><creator>AZANCHİLER, Habib</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2949-3836</orcidid><orcidid>https://orcid.org/0000-0002-7301-6973</orcidid><orcidid>https://orcid.org/0000-0002-1807-4732</orcidid></search><sort><creationdate>20200906</creationdate><title>Generalization of pinching operation to binary matroids</title><author>GHORBANİ, Vahid ; AZADİ, Ghodratollah ; AZANCHİLER, Habib</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1592-d30fdfd8c3224b4ecdd95e4b4ec7ecc7a7f4ee6d56dd66484abec583f09df77a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>online_resources</toplevel><creatorcontrib>GHORBANİ, Vahid</creatorcontrib><creatorcontrib>AZADİ, Ghodratollah</creatorcontrib><creatorcontrib>AZANCHİLER, Habib</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of algebra combinatorics discrete structures and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GHORBANİ, Vahid</au><au>AZADİ, Ghodratollah</au><au>AZANCHİLER, Habib</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalization of pinching operation to binary matroids</atitle><jtitle>Journal of algebra combinatorics discrete structures and applications</jtitle><date>2020-09-06</date><risdate>2020</risdate><volume>7</volume><issue>3</issue><spage>247</spage><epage>258</epage><pages>247-258</pages><issn>2148-838X</issn><eissn>2148-838X</eissn><abstract>In this paper, we generalize the pinching operation on two edges of graphs to binary matroids and investigate some of its basic properties. For $n\geq 2$, the matroid that is obtained from an $n$-connected matroid by this operation is a $k$-connected matroid with $k\in\{2,3,4\}$ or is a disconnected matroid. We find conditions to guarantee this $k$. Moreover, we show that Eulerian binary matroids are characterized by this operation and we also provide some interesting applications of this operation.</abstract><doi>10.13069/jacodesmath.784992</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2949-3836</orcidid><orcidid>https://orcid.org/0000-0002-7301-6973</orcidid><orcidid>https://orcid.org/0000-0002-1807-4732</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2148-838X
ispartof Journal of algebra combinatorics discrete structures and applications, 2020-09, Vol.7 (3), p.247-258
issn 2148-838X
2148-838X
language eng
recordid cdi_crossref_primary_10_13069_jacodesmath_784992
source EZB-FREE-00999 freely available EZB journals
title Generalization of pinching operation to binary matroids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A24%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalization%20of%20pinching%20operation%20to%20binary%20matroids&rft.jtitle=Journal%20of%20algebra%20combinatorics%20discrete%20structures%20and%20applications&rft.au=GHORBAN%C4%B0,%20Vahid&rft.date=2020-09-06&rft.volume=7&rft.issue=3&rft.spage=247&rft.epage=258&rft.pages=247-258&rft.issn=2148-838X&rft.eissn=2148-838X&rft_id=info:doi/10.13069/jacodesmath.784992&rft_dat=%3Ccrossref%3E10_13069_jacodesmath_784992%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true