On the sum of the k largest absolute values of Laplacian eigenvalues of digraphs

Let $L(G)$ be the Laplacian matrix of a digraph $G$ and $S_k(G)$ be the sum of the $k$ largest absolute values of Laplacian eigenvalues of $G$. Let $C_n^+$ be a digraph with $n+1$ vertices obtained from the directed cycle $C_n$ by attaching a pendant arc whose tail is on $C_n$. A digraph is $\mathbb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of linear algebra 2023-07, Vol.39, p.409-422
Hauptverfasser: Yang, Xiuwen, Liu, Xiaogang, Wang, Ligong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 422
container_issue
container_start_page 409
container_title The Electronic journal of linear algebra
container_volume 39
creator Yang, Xiuwen
Liu, Xiaogang
Wang, Ligong
description Let $L(G)$ be the Laplacian matrix of a digraph $G$ and $S_k(G)$ be the sum of the $k$ largest absolute values of Laplacian eigenvalues of $G$. Let $C_n^+$ be a digraph with $n+1$ vertices obtained from the directed cycle $C_n$ by attaching a pendant arc whose tail is on $C_n$. A digraph is $\mathbb{C}_n^+$-free if it contains no $C_{\ell}^+$ as a subdigraph for any $2\leq \ell \leq n-1$. In this paper, we present lower bounds of $S_n(G)$ of digraphs of order $n$. We provide the exact values of $S_k(G)$ of directed cycles and $\mathbb{C}_n^+$-free unicyclic digraphs. Moreover, we obtain upper bounds of $S_k(G)$ of $\mathbb{C}_n^+$-free digraphs which have vertex-disjoint directed cycles.
doi_str_mv 10.13001/ela.2023.7503
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_13001_ela_2023_7503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_13001_ela_2023_7503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c194t-26b96448f30282a9dd83b4556453b86954fbcdb9e9e88043d388fe643377e0283</originalsourceid><addsrcrecordid>eNpNkEtPhDAUhRujiePo1nX_AHjbW6BdmomPSUjGha6bArcMygChYOK_dxhNdHVOch6Lj7FbAbFAAHFHrYslSIyzBPCMrQRoEaEWcP7PX7KrEN4BJCidrNjLruPTnniYD7z3J_vBWzfWFCbuitC380T807UzhaWQu6F1ZeM6Tk1N3V9QNfXohn24ZhfetYFufnXN3h4fXjfPUb572m7u86gURk2RTAuTKqU9gtTSmarSWKgkSVWChU5NonxRVoUhQ1qDwgq19pQqxCyj4wTXLP75Lcc-hJG8Hcbm4MYvK8CeeNgjD7vwsAsP_AZKrFKd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the sum of the k largest absolute values of Laplacian eigenvalues of digraphs</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yang, Xiuwen ; Liu, Xiaogang ; Wang, Ligong</creator><creatorcontrib>Yang, Xiuwen ; Liu, Xiaogang ; Wang, Ligong</creatorcontrib><description>Let $L(G)$ be the Laplacian matrix of a digraph $G$ and $S_k(G)$ be the sum of the $k$ largest absolute values of Laplacian eigenvalues of $G$. Let $C_n^+$ be a digraph with $n+1$ vertices obtained from the directed cycle $C_n$ by attaching a pendant arc whose tail is on $C_n$. A digraph is $\mathbb{C}_n^+$-free if it contains no $C_{\ell}^+$ as a subdigraph for any $2\leq \ell \leq n-1$. In this paper, we present lower bounds of $S_n(G)$ of digraphs of order $n$. We provide the exact values of $S_k(G)$ of directed cycles and $\mathbb{C}_n^+$-free unicyclic digraphs. Moreover, we obtain upper bounds of $S_k(G)$ of $\mathbb{C}_n^+$-free digraphs which have vertex-disjoint directed cycles.</description><identifier>ISSN: 1081-3810</identifier><identifier>EISSN: 1081-3810</identifier><identifier>DOI: 10.13001/ela.2023.7503</identifier><language>eng</language><ispartof>The Electronic journal of linear algebra, 2023-07, Vol.39, p.409-422</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0266-9774 ; 0000-0002-0959-8323 ; 0000-0002-6160-1761</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Yang, Xiuwen</creatorcontrib><creatorcontrib>Liu, Xiaogang</creatorcontrib><creatorcontrib>Wang, Ligong</creatorcontrib><title>On the sum of the k largest absolute values of Laplacian eigenvalues of digraphs</title><title>The Electronic journal of linear algebra</title><description>Let $L(G)$ be the Laplacian matrix of a digraph $G$ and $S_k(G)$ be the sum of the $k$ largest absolute values of Laplacian eigenvalues of $G$. Let $C_n^+$ be a digraph with $n+1$ vertices obtained from the directed cycle $C_n$ by attaching a pendant arc whose tail is on $C_n$. A digraph is $\mathbb{C}_n^+$-free if it contains no $C_{\ell}^+$ as a subdigraph for any $2\leq \ell \leq n-1$. In this paper, we present lower bounds of $S_n(G)$ of digraphs of order $n$. We provide the exact values of $S_k(G)$ of directed cycles and $\mathbb{C}_n^+$-free unicyclic digraphs. Moreover, we obtain upper bounds of $S_k(G)$ of $\mathbb{C}_n^+$-free digraphs which have vertex-disjoint directed cycles.</description><issn>1081-3810</issn><issn>1081-3810</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkEtPhDAUhRujiePo1nX_AHjbW6BdmomPSUjGha6bArcMygChYOK_dxhNdHVOch6Lj7FbAbFAAHFHrYslSIyzBPCMrQRoEaEWcP7PX7KrEN4BJCidrNjLruPTnniYD7z3J_vBWzfWFCbuitC380T807UzhaWQu6F1ZeM6Tk1N3V9QNfXohn24ZhfetYFufnXN3h4fXjfPUb572m7u86gURk2RTAuTKqU9gtTSmarSWKgkSVWChU5NonxRVoUhQ1qDwgq19pQqxCyj4wTXLP75Lcc-hJG8Hcbm4MYvK8CeeNgjD7vwsAsP_AZKrFKd</recordid><startdate>20230720</startdate><enddate>20230720</enddate><creator>Yang, Xiuwen</creator><creator>Liu, Xiaogang</creator><creator>Wang, Ligong</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0266-9774</orcidid><orcidid>https://orcid.org/0000-0002-0959-8323</orcidid><orcidid>https://orcid.org/0000-0002-6160-1761</orcidid></search><sort><creationdate>20230720</creationdate><title>On the sum of the k largest absolute values of Laplacian eigenvalues of digraphs</title><author>Yang, Xiuwen ; Liu, Xiaogang ; Wang, Ligong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c194t-26b96448f30282a9dd83b4556453b86954fbcdb9e9e88043d388fe643377e0283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Yang, Xiuwen</creatorcontrib><creatorcontrib>Liu, Xiaogang</creatorcontrib><creatorcontrib>Wang, Ligong</creatorcontrib><collection>CrossRef</collection><jtitle>The Electronic journal of linear algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Xiuwen</au><au>Liu, Xiaogang</au><au>Wang, Ligong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the sum of the k largest absolute values of Laplacian eigenvalues of digraphs</atitle><jtitle>The Electronic journal of linear algebra</jtitle><date>2023-07-20</date><risdate>2023</risdate><volume>39</volume><spage>409</spage><epage>422</epage><pages>409-422</pages><issn>1081-3810</issn><eissn>1081-3810</eissn><abstract>Let $L(G)$ be the Laplacian matrix of a digraph $G$ and $S_k(G)$ be the sum of the $k$ largest absolute values of Laplacian eigenvalues of $G$. Let $C_n^+$ be a digraph with $n+1$ vertices obtained from the directed cycle $C_n$ by attaching a pendant arc whose tail is on $C_n$. A digraph is $\mathbb{C}_n^+$-free if it contains no $C_{\ell}^+$ as a subdigraph for any $2\leq \ell \leq n-1$. In this paper, we present lower bounds of $S_n(G)$ of digraphs of order $n$. We provide the exact values of $S_k(G)$ of directed cycles and $\mathbb{C}_n^+$-free unicyclic digraphs. Moreover, we obtain upper bounds of $S_k(G)$ of $\mathbb{C}_n^+$-free digraphs which have vertex-disjoint directed cycles.</abstract><doi>10.13001/ela.2023.7503</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0266-9774</orcidid><orcidid>https://orcid.org/0000-0002-0959-8323</orcidid><orcidid>https://orcid.org/0000-0002-6160-1761</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1081-3810
ispartof The Electronic journal of linear algebra, 2023-07, Vol.39, p.409-422
issn 1081-3810
1081-3810
language eng
recordid cdi_crossref_primary_10_13001_ela_2023_7503
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title On the sum of the k largest absolute values of Laplacian eigenvalues of digraphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A31%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20sum%20of%20the%20k%20largest%20absolute%20values%20of%20Laplacian%20eigenvalues%20of%20digraphs&rft.jtitle=The%20Electronic%20journal%20of%20linear%20algebra&rft.au=Yang,%20Xiuwen&rft.date=2023-07-20&rft.volume=39&rft.spage=409&rft.epage=422&rft.pages=409-422&rft.issn=1081-3810&rft.eissn=1081-3810&rft_id=info:doi/10.13001/ela.2023.7503&rft_dat=%3Ccrossref%3E10_13001_ela_2023_7503%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true