On the estimation of ${x}^TA^{-1}{x}$ for symmetric matrices
The central mathematical problem studied in this work is the estimation of the quadratic form $x^TA^{-1}x$ for a given symmetric positive definite matrix $A \in \mathbb{R}^{n \times n}$ and vector $x \in \mathbb{R}^n$. Several methods to estimate $x^TA^{-1}x$ without computing the matrix inverse are...
Gespeichert in:
Veröffentlicht in: | The Electronic journal of linear algebra 2021-07, Vol.37, p.549-561 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The central mathematical problem studied in this work is the estimation of the quadratic form $x^TA^{-1}x$ for a given symmetric positive definite matrix $A \in \mathbb{R}^{n \times n}$ and vector $x \in \mathbb{R}^n$. Several methods to estimate $x^TA^{-1}x$ without computing the matrix inverse are proposed. The precision of the estimates is analyzed both analytically and numerically.
|
---|---|
ISSN: | 1081-3810 1081-3810 |
DOI: | 10.13001/ela.2021.5611 |