Some additional notes on the spectra of non-negative symmetric 5 x 5 matrices

The Symmetric Non-negative Inverse Eigenvalue Problem (SNIEP) asks when is a list $ \sigma = \left( \lambda_{1}, \lambda_{2}, \dots, \lambda_{n} \right) $ of real, monotonically decreasing numbers, the spectrum of an $n \times n$, symmetric, non-negative matrix $A$. In that case, we say $\sigma$ is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of linear algebra 2021-01, Vol.37 (37), p.1-13
1. Verfasser: Loewy, Raphael
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 37
container_start_page 1
container_title The Electronic journal of linear algebra
container_volume 37
creator Loewy, Raphael
description The Symmetric Non-negative Inverse Eigenvalue Problem (SNIEP) asks when is a list $ \sigma = \left( \lambda_{1}, \lambda_{2}, \dots, \lambda_{n} \right) $ of real, monotonically decreasing numbers, the spectrum of an $n \times n$, symmetric, non-negative matrix $A$. In that case, we say $\sigma$ is realizable and $A$ is a realizing matrix. Here, we consider the case $n=5$, the lowest value of $n$ for which the problem is unsolved. Let $ s_{1}(\sigma) = \sum_{i=1}^5 \lambda_{i} $ and $ s_{3}(\sigma) = \sum_{i=1}^5 {\lambda_{i}}^3 $. It is known that to complete the solution for $n=5$, it remains to consider the case $\lambda_{3} > s_{1}(\sigma)$, so let $y=\lambda_{3}- s_{1}(\sigma)$ and assume $y \geq 0$. We prove that if $\sigma$ is realizable, then $s_{3}(\sigma) \geq s_{1}(\sigma)^3+6s_{1}(\sigma)y(s_{1}(\sigma)+y)$. This strengthens the inequality $s_{3}(\sigma) \geq s_{1}(\sigma)^3$ obtained by Loewy and Spector, which in turn strengthens the inequality $ 25s_{3}(\sigma) \geq s_{1}(\sigma)^3 $, one of the Johnson--Loewy--London inequalities. As an application of the new inequality, we show that certain lists previously unknown as far as their realizability is concerned are not realizable.
doi_str_mv 10.13001/ela.2021.5333
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_13001_ela_2021_5333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_13001_ela_2021_5333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c169t-a332d3e78ba74e62dddb1a2f7aa810dcd222545e9fd8e88c1ed50d4b1470c4cf3</originalsourceid><addsrcrecordid>eNpNkLtOAzEQRS0EEiHQUvsHdvH4kXVKFPGSgiiA2pq1x7BoH5FtIfL3bICC4mrunGI0OoxdgqhBCQFX1GMthYTaKKWO2AKEhUpZEMf_-ik7y_lDCCm0NQv2-DwNxDGErnTTiD0fp0KZTyMv78TzjnxJyKc487Ea6Q1L9znz_TBQSZ3nhn_NGfCwUD5nJxH7TBd_c8leb29eNvfV9unuYXO9rTys1qVCpWRQ1NgWG00rGUJoAWVsEOcPgw9SSqMNrWOwZK0HCkYE3YJuhNc-qiWrf-_6NOWcKLpd6gZMewfC_chwswx3kOEOMtQ3vCZTGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Some additional notes on the spectra of non-negative symmetric 5 x 5 matrices</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Loewy, Raphael</creator><creatorcontrib>Loewy, Raphael</creatorcontrib><description>The Symmetric Non-negative Inverse Eigenvalue Problem (SNIEP) asks when is a list $ \sigma = \left( \lambda_{1}, \lambda_{2}, \dots, \lambda_{n} \right) $ of real, monotonically decreasing numbers, the spectrum of an $n \times n$, symmetric, non-negative matrix $A$. In that case, we say $\sigma$ is realizable and $A$ is a realizing matrix. Here, we consider the case $n=5$, the lowest value of $n$ for which the problem is unsolved. Let $ s_{1}(\sigma) = \sum_{i=1}^5 \lambda_{i} $ and $ s_{3}(\sigma) = \sum_{i=1}^5 {\lambda_{i}}^3 $. It is known that to complete the solution for $n=5$, it remains to consider the case $\lambda_{3} &gt; s_{1}(\sigma)$, so let $y=\lambda_{3}- s_{1}(\sigma)$ and assume $y \geq 0$. We prove that if $\sigma$ is realizable, then $s_{3}(\sigma) \geq s_{1}(\sigma)^3+6s_{1}(\sigma)y(s_{1}(\sigma)+y)$. This strengthens the inequality $s_{3}(\sigma) \geq s_{1}(\sigma)^3$ obtained by Loewy and Spector, which in turn strengthens the inequality $ 25s_{3}(\sigma) \geq s_{1}(\sigma)^3 $, one of the Johnson--Loewy--London inequalities. As an application of the new inequality, we show that certain lists previously unknown as far as their realizability is concerned are not realizable.</description><identifier>ISSN: 1081-3810</identifier><identifier>EISSN: 1081-3810</identifier><identifier>DOI: 10.13001/ela.2021.5333</identifier><language>eng</language><ispartof>The Electronic journal of linear algebra, 2021-01, Vol.37 (37), p.1-13</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c169t-a332d3e78ba74e62dddb1a2f7aa810dcd222545e9fd8e88c1ed50d4b1470c4cf3</citedby><orcidid>0000-0002-3969-6370</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Loewy, Raphael</creatorcontrib><title>Some additional notes on the spectra of non-negative symmetric 5 x 5 matrices</title><title>The Electronic journal of linear algebra</title><description>The Symmetric Non-negative Inverse Eigenvalue Problem (SNIEP) asks when is a list $ \sigma = \left( \lambda_{1}, \lambda_{2}, \dots, \lambda_{n} \right) $ of real, monotonically decreasing numbers, the spectrum of an $n \times n$, symmetric, non-negative matrix $A$. In that case, we say $\sigma$ is realizable and $A$ is a realizing matrix. Here, we consider the case $n=5$, the lowest value of $n$ for which the problem is unsolved. Let $ s_{1}(\sigma) = \sum_{i=1}^5 \lambda_{i} $ and $ s_{3}(\sigma) = \sum_{i=1}^5 {\lambda_{i}}^3 $. It is known that to complete the solution for $n=5$, it remains to consider the case $\lambda_{3} &gt; s_{1}(\sigma)$, so let $y=\lambda_{3}- s_{1}(\sigma)$ and assume $y \geq 0$. We prove that if $\sigma$ is realizable, then $s_{3}(\sigma) \geq s_{1}(\sigma)^3+6s_{1}(\sigma)y(s_{1}(\sigma)+y)$. This strengthens the inequality $s_{3}(\sigma) \geq s_{1}(\sigma)^3$ obtained by Loewy and Spector, which in turn strengthens the inequality $ 25s_{3}(\sigma) \geq s_{1}(\sigma)^3 $, one of the Johnson--Loewy--London inequalities. As an application of the new inequality, we show that certain lists previously unknown as far as their realizability is concerned are not realizable.</description><issn>1081-3810</issn><issn>1081-3810</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkLtOAzEQRS0EEiHQUvsHdvH4kXVKFPGSgiiA2pq1x7BoH5FtIfL3bICC4mrunGI0OoxdgqhBCQFX1GMthYTaKKWO2AKEhUpZEMf_-ik7y_lDCCm0NQv2-DwNxDGErnTTiD0fp0KZTyMv78TzjnxJyKc487Ea6Q1L9znz_TBQSZ3nhn_NGfCwUD5nJxH7TBd_c8leb29eNvfV9unuYXO9rTys1qVCpWRQ1NgWG00rGUJoAWVsEOcPgw9SSqMNrWOwZK0HCkYE3YJuhNc-qiWrf-_6NOWcKLpd6gZMewfC_chwswx3kOEOMtQ3vCZTGA</recordid><startdate>20210109</startdate><enddate>20210109</enddate><creator>Loewy, Raphael</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3969-6370</orcidid></search><sort><creationdate>20210109</creationdate><title>Some additional notes on the spectra of non-negative symmetric 5 x 5 matrices</title><author>Loewy, Raphael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c169t-a332d3e78ba74e62dddb1a2f7aa810dcd222545e9fd8e88c1ed50d4b1470c4cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Loewy, Raphael</creatorcontrib><collection>CrossRef</collection><jtitle>The Electronic journal of linear algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loewy, Raphael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some additional notes on the spectra of non-negative symmetric 5 x 5 matrices</atitle><jtitle>The Electronic journal of linear algebra</jtitle><date>2021-01-09</date><risdate>2021</risdate><volume>37</volume><issue>37</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1081-3810</issn><eissn>1081-3810</eissn><abstract>The Symmetric Non-negative Inverse Eigenvalue Problem (SNIEP) asks when is a list $ \sigma = \left( \lambda_{1}, \lambda_{2}, \dots, \lambda_{n} \right) $ of real, monotonically decreasing numbers, the spectrum of an $n \times n$, symmetric, non-negative matrix $A$. In that case, we say $\sigma$ is realizable and $A$ is a realizing matrix. Here, we consider the case $n=5$, the lowest value of $n$ for which the problem is unsolved. Let $ s_{1}(\sigma) = \sum_{i=1}^5 \lambda_{i} $ and $ s_{3}(\sigma) = \sum_{i=1}^5 {\lambda_{i}}^3 $. It is known that to complete the solution for $n=5$, it remains to consider the case $\lambda_{3} &gt; s_{1}(\sigma)$, so let $y=\lambda_{3}- s_{1}(\sigma)$ and assume $y \geq 0$. We prove that if $\sigma$ is realizable, then $s_{3}(\sigma) \geq s_{1}(\sigma)^3+6s_{1}(\sigma)y(s_{1}(\sigma)+y)$. This strengthens the inequality $s_{3}(\sigma) \geq s_{1}(\sigma)^3$ obtained by Loewy and Spector, which in turn strengthens the inequality $ 25s_{3}(\sigma) \geq s_{1}(\sigma)^3 $, one of the Johnson--Loewy--London inequalities. As an application of the new inequality, we show that certain lists previously unknown as far as their realizability is concerned are not realizable.</abstract><doi>10.13001/ela.2021.5333</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3969-6370</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1081-3810
ispartof The Electronic journal of linear algebra, 2021-01, Vol.37 (37), p.1-13
issn 1081-3810
1081-3810
language eng
recordid cdi_crossref_primary_10_13001_ela_2021_5333
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Some additional notes on the spectra of non-negative symmetric 5 x 5 matrices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T13%3A37%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20additional%20notes%20on%20the%20spectra%20of%20non-negative%20symmetric%205%20x%205%20matrices&rft.jtitle=The%20Electronic%20journal%20of%20linear%20algebra&rft.au=Loewy,%20Raphael&rft.date=2021-01-09&rft.volume=37&rft.issue=37&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1081-3810&rft.eissn=1081-3810&rft_id=info:doi/10.13001/ela.2021.5333&rft_dat=%3Ccrossref%3E10_13001_ela_2021_5333%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true