Determinants of Normalized Bohemian Upper Hessenberg Matrices

A matrix is Bohemian if its elements are taken from a finite set of integers. An upper Hessenberg matrix is normalized if all its subdiagonal elements are ones, and hollow if it has only zeros along the main diagonal. All possible determinants of families of normalized and hollow normalized Bohemian...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of linear algebra 2020-06, Vol.36 (36), p.352-366
Hauptverfasser: Fasi, Massimiliano, Negri Porzio, Gian Maria
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A matrix is Bohemian if its elements are taken from a finite set of integers. An upper Hessenberg matrix is normalized if all its subdiagonal elements are ones, and hollow if it has only zeros along the main diagonal. All possible determinants of families of normalized and hollow normalized Bohemian upper Hessenberg matrices are enumerated. It is shown that in the case of hollow matrices the maximal determinants are related to a generalization of Fibonacci numbers. Several conjectures recently stated by Corless and Thornton follow from these results.
ISSN:1081-3810
1081-3810
DOI:10.13001/ela.2020.5053