Determinants of Normalized Bohemian Upper Hessenberg Matrices
A matrix is Bohemian if its elements are taken from a finite set of integers. An upper Hessenberg matrix is normalized if all its subdiagonal elements are ones, and hollow if it has only zeros along the main diagonal. All possible determinants of families of normalized and hollow normalized Bohemian...
Gespeichert in:
Veröffentlicht in: | The Electronic journal of linear algebra 2020-06, Vol.36 (36), p.352-366 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A matrix is Bohemian if its elements are taken from a finite set of integers. An upper Hessenberg matrix is normalized if all its subdiagonal elements are ones, and hollow if it has only zeros along the main diagonal. All possible determinants of families of normalized and hollow normalized Bohemian upper Hessenberg matrices are enumerated. It is shown that in the case of hollow matrices the maximal determinants are related to a generalization of Fibonacci numbers. Several conjectures recently stated by Corless and Thornton follow from these results. |
---|---|
ISSN: | 1081-3810 1081-3810 |
DOI: | 10.13001/ela.2020.5053 |