An Expansion Property of Boolean Linear Maps

Given a finite set $K$, a Boolean linear map on $K$ is a map $f$ from the set $2^K$ of all subsets of $K$ into itself with $f(\emptyset )=\emptyset$ such that $f(A\cup B)=f(A)\cup f(B)$ holds for all $A,B\in 2^K$. For fixed subsets $X, Y$ of $K$, to predict if $Y$ is reachable from $X$ in the dynami...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic Journal of Linear Algebra 2016-06, Vol.31 (1), p.381-407
Hauptverfasser: Xu, Zeying, Wu, Yaokun, Zhu, Yinfeng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 407
container_issue 1
container_start_page 381
container_title Electronic Journal of Linear Algebra
container_volume 31
creator Xu, Zeying
Wu, Yaokun
Zhu, Yinfeng
description Given a finite set $K$, a Boolean linear map on $K$ is a map $f$ from the set $2^K$ of all subsets of $K$ into itself with $f(\emptyset )=\emptyset$ such that $f(A\cup B)=f(A)\cup f(B)$ holds for all $A,B\in 2^K$. For fixed subsets $X, Y$ of $K$, to predict if $Y$ is reachable from $X$ in the dynamical system driven by $f$, one can assume the existence of nonnegative integers $h$ with $f^h(X)=Y$, find an upper bound $\alpha$ for the minimum of all such assumed integers $h$, and test if $Y$ really appears in $f^0(X), \ldots, f^\alpha(X)$. In order to get such an upper bound estimate, this paper establishes an expansion property for the Boolean linear map $f$. Namely, the authors find a lower bound on the size of $f^h(X)$ for any nonnegative integer $h$. Besides presenting several direct applications of the derived expansion property, this paper collects some related problems on Boolean linear dynamical systems, including problems on primitive multilinear maps and inhomogeneous topological Markov chains.
doi_str_mv 10.13001/1081-3810.3088
format Article
fullrecord <record><control><sourceid>bepress_cross</sourceid><recordid>TN_cdi_crossref_primary_10_13001_1081_3810_3088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ela3088</sourcerecordid><originalsourceid>FETCH-LOGICAL-b305t-b176d03ef1de62723a29c57900d8d0a8e4b8d68f2eacccd572f04a90eca72f673</originalsourceid><addsrcrecordid>eNpNj01LAzEQhoMoWKtnb5If4NpJsh_ZYy2tCit60HOYTSawsm6WpAf77922UjzNOy_zDDyM3Qp4EApALARokSk97Qq0PmOzU3H-L1-yq5S-ACTkupix--XA1z8jDqkLA3-PYaS43fHg-WMIPeHAm24gjPwVx3TNLjz2iW7-5px9btYfq-eseXt6WS2brFVQbLNWVKUDRV44KmUlFcraFlUN4LQD1JS32pXaS0JrrSsq6SHHGsjiFMtKzdni-NfGkFIkb8bYfWPcGQHmIGv2PmbvY_ayE3F3JFoaI6V0AqjHw8EvZ55QgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An Expansion Property of Boolean Linear Maps</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Xu, Zeying ; Wu, Yaokun ; Zhu, Yinfeng</creator><creatorcontrib>Xu, Zeying ; Wu, Yaokun ; Zhu, Yinfeng</creatorcontrib><description>Given a finite set $K$, a Boolean linear map on $K$ is a map $f$ from the set $2^K$ of all subsets of $K$ into itself with $f(\emptyset )=\emptyset$ such that $f(A\cup B)=f(A)\cup f(B)$ holds for all $A,B\in 2^K$. For fixed subsets $X, Y$ of $K$, to predict if $Y$ is reachable from $X$ in the dynamical system driven by $f$, one can assume the existence of nonnegative integers $h$ with $f^h(X)=Y$, find an upper bound $\alpha$ for the minimum of all such assumed integers $h$, and test if $Y$ really appears in $f^0(X), \ldots, f^\alpha(X)$. In order to get such an upper bound estimate, this paper establishes an expansion property for the Boolean linear map $f$. Namely, the authors find a lower bound on the size of $f^h(X)$ for any nonnegative integer $h$. Besides presenting several direct applications of the derived expansion property, this paper collects some related problems on Boolean linear dynamical systems, including problems on primitive multilinear maps and inhomogeneous topological Markov chains.</description><identifier>ISSN: 1081-3810</identifier><identifier>EISSN: 1081-3810</identifier><identifier>DOI: 10.13001/1081-3810.3088</identifier><language>eng</language><publisher>University of Wyoming</publisher><ispartof>Electronic Journal of Linear Algebra, 2016-06, Vol.31 (1), p.381-407</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b305t-b176d03ef1de62723a29c57900d8d0a8e4b8d68f2eacccd572f04a90eca72f673</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Xu, Zeying</creatorcontrib><creatorcontrib>Wu, Yaokun</creatorcontrib><creatorcontrib>Zhu, Yinfeng</creatorcontrib><title>An Expansion Property of Boolean Linear Maps</title><title>Electronic Journal of Linear Algebra</title><description>Given a finite set $K$, a Boolean linear map on $K$ is a map $f$ from the set $2^K$ of all subsets of $K$ into itself with $f(\emptyset )=\emptyset$ such that $f(A\cup B)=f(A)\cup f(B)$ holds for all $A,B\in 2^K$. For fixed subsets $X, Y$ of $K$, to predict if $Y$ is reachable from $X$ in the dynamical system driven by $f$, one can assume the existence of nonnegative integers $h$ with $f^h(X)=Y$, find an upper bound $\alpha$ for the minimum of all such assumed integers $h$, and test if $Y$ really appears in $f^0(X), \ldots, f^\alpha(X)$. In order to get such an upper bound estimate, this paper establishes an expansion property for the Boolean linear map $f$. Namely, the authors find a lower bound on the size of $f^h(X)$ for any nonnegative integer $h$. Besides presenting several direct applications of the derived expansion property, this paper collects some related problems on Boolean linear dynamical systems, including problems on primitive multilinear maps and inhomogeneous topological Markov chains.</description><issn>1081-3810</issn><issn>1081-3810</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpNj01LAzEQhoMoWKtnb5If4NpJsh_ZYy2tCit60HOYTSawsm6WpAf77922UjzNOy_zDDyM3Qp4EApALARokSk97Qq0PmOzU3H-L1-yq5S-ACTkupix--XA1z8jDqkLA3-PYaS43fHg-WMIPeHAm24gjPwVx3TNLjz2iW7-5px9btYfq-eseXt6WS2brFVQbLNWVKUDRV44KmUlFcraFlUN4LQD1JS32pXaS0JrrSsq6SHHGsjiFMtKzdni-NfGkFIkb8bYfWPcGQHmIGv2PmbvY_ayE3F3JFoaI6V0AqjHw8EvZ55QgQ</recordid><startdate>20160609</startdate><enddate>20160609</enddate><creator>Xu, Zeying</creator><creator>Wu, Yaokun</creator><creator>Zhu, Yinfeng</creator><general>University of Wyoming</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160609</creationdate><title>An Expansion Property of Boolean Linear Maps</title><author>Xu, Zeying ; Wu, Yaokun ; Zhu, Yinfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b305t-b176d03ef1de62723a29c57900d8d0a8e4b8d68f2eacccd572f04a90eca72f673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Xu, Zeying</creatorcontrib><creatorcontrib>Wu, Yaokun</creatorcontrib><creatorcontrib>Zhu, Yinfeng</creatorcontrib><collection>CrossRef</collection><jtitle>Electronic Journal of Linear Algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Zeying</au><au>Wu, Yaokun</au><au>Zhu, Yinfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Expansion Property of Boolean Linear Maps</atitle><jtitle>Electronic Journal of Linear Algebra</jtitle><date>2016-06-09</date><risdate>2016</risdate><volume>31</volume><issue>1</issue><spage>381</spage><epage>407</epage><pages>381-407</pages><issn>1081-3810</issn><eissn>1081-3810</eissn><abstract>Given a finite set $K$, a Boolean linear map on $K$ is a map $f$ from the set $2^K$ of all subsets of $K$ into itself with $f(\emptyset )=\emptyset$ such that $f(A\cup B)=f(A)\cup f(B)$ holds for all $A,B\in 2^K$. For fixed subsets $X, Y$ of $K$, to predict if $Y$ is reachable from $X$ in the dynamical system driven by $f$, one can assume the existence of nonnegative integers $h$ with $f^h(X)=Y$, find an upper bound $\alpha$ for the minimum of all such assumed integers $h$, and test if $Y$ really appears in $f^0(X), \ldots, f^\alpha(X)$. In order to get such an upper bound estimate, this paper establishes an expansion property for the Boolean linear map $f$. Namely, the authors find a lower bound on the size of $f^h(X)$ for any nonnegative integer $h$. Besides presenting several direct applications of the derived expansion property, this paper collects some related problems on Boolean linear dynamical systems, including problems on primitive multilinear maps and inhomogeneous topological Markov chains.</abstract><pub>University of Wyoming</pub><doi>10.13001/1081-3810.3088</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1081-3810
ispartof Electronic Journal of Linear Algebra, 2016-06, Vol.31 (1), p.381-407
issn 1081-3810
1081-3810
language eng
recordid cdi_crossref_primary_10_13001_1081_3810_3088
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title An Expansion Property of Boolean Linear Maps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A20%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-bepress_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Expansion%20Property%20of%20Boolean%20Linear%20Maps&rft.jtitle=Electronic%20Journal%20of%20Linear%20Algebra&rft.au=Xu,%20Zeying&rft.date=2016-06-09&rft.volume=31&rft.issue=1&rft.spage=381&rft.epage=407&rft.pages=381-407&rft.issn=1081-3810&rft.eissn=1081-3810&rft_id=info:doi/10.13001/1081-3810.3088&rft_dat=%3Cbepress_cross%3Eela3088%3C/bepress_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true