An Expansion Property of Boolean Linear Maps
Given a finite set $K$, a Boolean linear map on $K$ is a map $f$ from the set $2^K$ of all subsets of $K$ into itself with $f(\emptyset )=\emptyset$ such that $f(A\cup B)=f(A)\cup f(B)$ holds for all $A,B\in 2^K$. For fixed subsets $X, Y$ of $K$, to predict if $Y$ is reachable from $X$ in the dynami...
Gespeichert in:
Veröffentlicht in: | Electronic Journal of Linear Algebra 2016-06, Vol.31 (1), p.381-407 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 407 |
---|---|
container_issue | 1 |
container_start_page | 381 |
container_title | Electronic Journal of Linear Algebra |
container_volume | 31 |
creator | Xu, Zeying Wu, Yaokun Zhu, Yinfeng |
description | Given a finite set $K$, a Boolean linear map on $K$ is a map $f$ from the set $2^K$ of all subsets of $K$ into itself with $f(\emptyset )=\emptyset$ such that $f(A\cup B)=f(A)\cup f(B)$ holds for all $A,B\in 2^K$. For fixed subsets $X, Y$ of $K$, to predict if $Y$ is reachable from $X$ in the dynamical system driven by $f$, one can assume the existence of nonnegative integers $h$ with $f^h(X)=Y$, find an upper bound $\alpha$ for the minimum of all such assumed integers $h$, and test if $Y$ really appears in $f^0(X), \ldots, f^\alpha(X)$. In order to get such an upper bound estimate, this paper establishes an expansion property for the Boolean linear map $f$. Namely, the authors find a lower bound on the size of $f^h(X)$ for any nonnegative integer $h$. Besides presenting several direct applications of the derived expansion property, this paper collects some related problems on Boolean linear dynamical systems, including problems on primitive multilinear maps and inhomogeneous topological Markov chains. |
doi_str_mv | 10.13001/1081-3810.3088 |
format | Article |
fullrecord | <record><control><sourceid>bepress_cross</sourceid><recordid>TN_cdi_crossref_primary_10_13001_1081_3810_3088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ela3088</sourcerecordid><originalsourceid>FETCH-LOGICAL-b305t-b176d03ef1de62723a29c57900d8d0a8e4b8d68f2eacccd572f04a90eca72f673</originalsourceid><addsrcrecordid>eNpNj01LAzEQhoMoWKtnb5If4NpJsh_ZYy2tCit60HOYTSawsm6WpAf77922UjzNOy_zDDyM3Qp4EApALARokSk97Qq0PmOzU3H-L1-yq5S-ACTkupix--XA1z8jDqkLA3-PYaS43fHg-WMIPeHAm24gjPwVx3TNLjz2iW7-5px9btYfq-eseXt6WS2brFVQbLNWVKUDRV44KmUlFcraFlUN4LQD1JS32pXaS0JrrSsq6SHHGsjiFMtKzdni-NfGkFIkb8bYfWPcGQHmIGv2PmbvY_ayE3F3JFoaI6V0AqjHw8EvZ55QgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An Expansion Property of Boolean Linear Maps</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Xu, Zeying ; Wu, Yaokun ; Zhu, Yinfeng</creator><creatorcontrib>Xu, Zeying ; Wu, Yaokun ; Zhu, Yinfeng</creatorcontrib><description>Given a finite set $K$, a Boolean linear map on $K$ is a map $f$ from the set $2^K$ of all subsets of $K$ into itself with $f(\emptyset )=\emptyset$ such that $f(A\cup B)=f(A)\cup f(B)$ holds for all $A,B\in 2^K$. For fixed subsets $X, Y$ of $K$, to predict if $Y$ is reachable from $X$ in the dynamical system driven by $f$, one can assume the existence of nonnegative integers $h$ with $f^h(X)=Y$, find an upper bound $\alpha$ for the minimum of all such assumed integers $h$, and test if $Y$ really appears in $f^0(X), \ldots, f^\alpha(X)$. In order to get such an upper bound estimate, this paper establishes an expansion property for the Boolean linear map $f$. Namely, the authors find a lower bound on the size of $f^h(X)$ for any nonnegative integer $h$. Besides presenting several direct applications of the derived expansion property, this paper collects some related problems on Boolean linear dynamical systems, including problems on primitive multilinear maps and inhomogeneous topological Markov chains.</description><identifier>ISSN: 1081-3810</identifier><identifier>EISSN: 1081-3810</identifier><identifier>DOI: 10.13001/1081-3810.3088</identifier><language>eng</language><publisher>University of Wyoming</publisher><ispartof>Electronic Journal of Linear Algebra, 2016-06, Vol.31 (1), p.381-407</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b305t-b176d03ef1de62723a29c57900d8d0a8e4b8d68f2eacccd572f04a90eca72f673</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Xu, Zeying</creatorcontrib><creatorcontrib>Wu, Yaokun</creatorcontrib><creatorcontrib>Zhu, Yinfeng</creatorcontrib><title>An Expansion Property of Boolean Linear Maps</title><title>Electronic Journal of Linear Algebra</title><description>Given a finite set $K$, a Boolean linear map on $K$ is a map $f$ from the set $2^K$ of all subsets of $K$ into itself with $f(\emptyset )=\emptyset$ such that $f(A\cup B)=f(A)\cup f(B)$ holds for all $A,B\in 2^K$. For fixed subsets $X, Y$ of $K$, to predict if $Y$ is reachable from $X$ in the dynamical system driven by $f$, one can assume the existence of nonnegative integers $h$ with $f^h(X)=Y$, find an upper bound $\alpha$ for the minimum of all such assumed integers $h$, and test if $Y$ really appears in $f^0(X), \ldots, f^\alpha(X)$. In order to get such an upper bound estimate, this paper establishes an expansion property for the Boolean linear map $f$. Namely, the authors find a lower bound on the size of $f^h(X)$ for any nonnegative integer $h$. Besides presenting several direct applications of the derived expansion property, this paper collects some related problems on Boolean linear dynamical systems, including problems on primitive multilinear maps and inhomogeneous topological Markov chains.</description><issn>1081-3810</issn><issn>1081-3810</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpNj01LAzEQhoMoWKtnb5If4NpJsh_ZYy2tCit60HOYTSawsm6WpAf77922UjzNOy_zDDyM3Qp4EApALARokSk97Qq0PmOzU3H-L1-yq5S-ACTkupix--XA1z8jDqkLA3-PYaS43fHg-WMIPeHAm24gjPwVx3TNLjz2iW7-5px9btYfq-eseXt6WS2brFVQbLNWVKUDRV44KmUlFcraFlUN4LQD1JS32pXaS0JrrSsq6SHHGsjiFMtKzdni-NfGkFIkb8bYfWPcGQHmIGv2PmbvY_ayE3F3JFoaI6V0AqjHw8EvZ55QgQ</recordid><startdate>20160609</startdate><enddate>20160609</enddate><creator>Xu, Zeying</creator><creator>Wu, Yaokun</creator><creator>Zhu, Yinfeng</creator><general>University of Wyoming</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160609</creationdate><title>An Expansion Property of Boolean Linear Maps</title><author>Xu, Zeying ; Wu, Yaokun ; Zhu, Yinfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b305t-b176d03ef1de62723a29c57900d8d0a8e4b8d68f2eacccd572f04a90eca72f673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Xu, Zeying</creatorcontrib><creatorcontrib>Wu, Yaokun</creatorcontrib><creatorcontrib>Zhu, Yinfeng</creatorcontrib><collection>CrossRef</collection><jtitle>Electronic Journal of Linear Algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Zeying</au><au>Wu, Yaokun</au><au>Zhu, Yinfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Expansion Property of Boolean Linear Maps</atitle><jtitle>Electronic Journal of Linear Algebra</jtitle><date>2016-06-09</date><risdate>2016</risdate><volume>31</volume><issue>1</issue><spage>381</spage><epage>407</epage><pages>381-407</pages><issn>1081-3810</issn><eissn>1081-3810</eissn><abstract>Given a finite set $K$, a Boolean linear map on $K$ is a map $f$ from the set $2^K$ of all subsets of $K$ into itself with $f(\emptyset )=\emptyset$ such that $f(A\cup B)=f(A)\cup f(B)$ holds for all $A,B\in 2^K$. For fixed subsets $X, Y$ of $K$, to predict if $Y$ is reachable from $X$ in the dynamical system driven by $f$, one can assume the existence of nonnegative integers $h$ with $f^h(X)=Y$, find an upper bound $\alpha$ for the minimum of all such assumed integers $h$, and test if $Y$ really appears in $f^0(X), \ldots, f^\alpha(X)$. In order to get such an upper bound estimate, this paper establishes an expansion property for the Boolean linear map $f$. Namely, the authors find a lower bound on the size of $f^h(X)$ for any nonnegative integer $h$. Besides presenting several direct applications of the derived expansion property, this paper collects some related problems on Boolean linear dynamical systems, including problems on primitive multilinear maps and inhomogeneous topological Markov chains.</abstract><pub>University of Wyoming</pub><doi>10.13001/1081-3810.3088</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1081-3810 |
ispartof | Electronic Journal of Linear Algebra, 2016-06, Vol.31 (1), p.381-407 |
issn | 1081-3810 1081-3810 |
language | eng |
recordid | cdi_crossref_primary_10_13001_1081_3810_3088 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | An Expansion Property of Boolean Linear Maps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A20%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-bepress_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Expansion%20Property%20of%20Boolean%20Linear%20Maps&rft.jtitle=Electronic%20Journal%20of%20Linear%20Algebra&rft.au=Xu,%20Zeying&rft.date=2016-06-09&rft.volume=31&rft.issue=1&rft.spage=381&rft.epage=407&rft.pages=381-407&rft.issn=1081-3810&rft.eissn=1081-3810&rft_id=info:doi/10.13001/1081-3810.3088&rft_dat=%3Cbepress_cross%3Eela3088%3C/bepress_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |