On-Line Distinction Methods of Human Falling Motions by Machine Learning(Mechanical Systems)

A hip protector system using an airbag for prevention of a femoral neck fracture is under developing. In the system, the instance detection of falling motions by using an appropriate on-line algorithm based on sensor signals is required. The purpose of this paper is to propose on-line distinction pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the Japan Society of Mechanical Engineers Series C 2010/12/25, Vol.76(772), pp.3704-3713
Hauptverfasser: AOYAGI, Shunichi, CHIDA, Yuichi, YATSUNAMI, Tetsuji, NISHIMURA, Teruyuki, ASAWA, Satoshi, ISHIHARA, Yoshiyuki, KOBAYASHI, Hidetoshi, YOSHIMATSU, Shunichi, OYA, Masahiro
Format: Artikel
Sprache:eng ; jpn
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3713
container_issue 772
container_start_page 3704
container_title Transactions of the Japan Society of Mechanical Engineers Series C
container_volume 76
creator AOYAGI, Shunichi
CHIDA, Yuichi
YATSUNAMI, Tetsuji
NISHIMURA, Teruyuki
ASAWA, Satoshi
ISHIHARA, Yoshiyuki
KOBAYASHI, Hidetoshi
YOSHIMATSU, Shunichi
OYA, Masahiro
description A hip protector system using an airbag for prevention of a femoral neck fracture is under developing. In the system, the instance detection of falling motions by using an appropriate on-line algorithm based on sensor signals is required. The purpose of this paper is to propose on-line distinction procedures of human falling motions based on the machine learning, such as the support vector machine and the neural network. Four distinction procedures of falling motions are proposed in the paper, and the procedures use one axis gyro sensor and two axis accelerometers. Three-types of falling motions which cause a femoral neck fracture for elderly people are considered in the paper. The detection performance of the four procedures are evaluated for the three-types of falling motions, and the procedure based on the neural network considering time series of sensor signals provides 100% detection rate for the three-types of falling motions.
doi_str_mv 10.1299/kikaic.76.3704
format Article
fullrecord <record><control><sourceid>jstage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1299_kikaic_76_3704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>article_kikaic1979_76_772_76_KJ00006813329_article_char_en</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2224-76d4d1fe8cf8f6ff3b5714cf174050dc185e2c7766cd5de52ad0ff9ec93deb153</originalsourceid><addsrcrecordid>eNo9kDtPwzAUhS0EElXpyuwRhhS_HyMqjwKJigRsSJHj2K1p6qA4DP33JGrV6QznfFe6HwDXGM0x0fpuG7Ym2LkUcyoROwMTrBTLFOXsHEwQVTLjiLBLMEspVAghTYWmagK-VzHLQ3TwIaQ-RNuHNsLC9Zu2TrD1cPm3MxE-maYJcQ2LduwTrPawMHYzcrkzXRy6m8LZjYnBmgZ-7FPvdun2Clx40yQ3O-YUfD09fi6WWb56flnc55klhLBMiprV2DtlvfLCe1pxiZn1WDLEUW2x4o5YKYWwNa8dJ6ZG3mtnNa1dhTmdgvnhru3alDrny98u7Ey3LzEqRz3lQU8pRTnqGYD3A_CTerN2p7np-mAbd5xjLfWISEnGeHsdvCGhMKVEn6bD013pIv0HJXt15Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On-Line Distinction Methods of Human Falling Motions by Machine Learning(Mechanical Systems)</title><source>J-STAGE Free</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>AOYAGI, Shunichi ; CHIDA, Yuichi ; YATSUNAMI, Tetsuji ; NISHIMURA, Teruyuki ; ASAWA, Satoshi ; ISHIHARA, Yoshiyuki ; KOBAYASHI, Hidetoshi ; YOSHIMATSU, Shunichi ; OYA, Masahiro</creator><creatorcontrib>AOYAGI, Shunichi ; CHIDA, Yuichi ; YATSUNAMI, Tetsuji ; NISHIMURA, Teruyuki ; ASAWA, Satoshi ; ISHIHARA, Yoshiyuki ; KOBAYASHI, Hidetoshi ; YOSHIMATSU, Shunichi ; OYA, Masahiro</creatorcontrib><description>A hip protector system using an airbag for prevention of a femoral neck fracture is under developing. In the system, the instance detection of falling motions by using an appropriate on-line algorithm based on sensor signals is required. The purpose of this paper is to propose on-line distinction procedures of human falling motions based on the machine learning, such as the support vector machine and the neural network. Four distinction procedures of falling motions are proposed in the paper, and the procedures use one axis gyro sensor and two axis accelerometers. Three-types of falling motions which cause a femoral neck fracture for elderly people are considered in the paper. The detection performance of the four procedures are evaluated for the three-types of falling motions, and the procedure based on the neural network considering time series of sensor signals provides 100% detection rate for the three-types of falling motions.</description><identifier>ISSN: 0387-5024</identifier><identifier>EISSN: 1884-8354</identifier><identifier>DOI: 10.1299/kikaic.76.3704</identifier><language>eng ; jpn</language><publisher>The Japan Society of Mechanical Engineers</publisher><subject>Accelerometer ; Falling Distinction ; Femoral Neck Fracture ; Gyro Sensor ; Hip Protector ; Learning ; Neural Network ; Pattern Recognition ; Support Vector Machine</subject><ispartof>Transactions of the Japan Society of Mechanical Engineers Series C, 2010/12/25, Vol.76(772), pp.3704-3713</ispartof><rights>2010 The Japan Society of Mechanical Engineers</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2224-76d4d1fe8cf8f6ff3b5714cf174050dc185e2c7766cd5de52ad0ff9ec93deb153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1877,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>AOYAGI, Shunichi</creatorcontrib><creatorcontrib>CHIDA, Yuichi</creatorcontrib><creatorcontrib>YATSUNAMI, Tetsuji</creatorcontrib><creatorcontrib>NISHIMURA, Teruyuki</creatorcontrib><creatorcontrib>ASAWA, Satoshi</creatorcontrib><creatorcontrib>ISHIHARA, Yoshiyuki</creatorcontrib><creatorcontrib>KOBAYASHI, Hidetoshi</creatorcontrib><creatorcontrib>YOSHIMATSU, Shunichi</creatorcontrib><creatorcontrib>OYA, Masahiro</creatorcontrib><title>On-Line Distinction Methods of Human Falling Motions by Machine Learning(Mechanical Systems)</title><title>Transactions of the Japan Society of Mechanical Engineers Series C</title><addtitle>JSMET</addtitle><description>A hip protector system using an airbag for prevention of a femoral neck fracture is under developing. In the system, the instance detection of falling motions by using an appropriate on-line algorithm based on sensor signals is required. The purpose of this paper is to propose on-line distinction procedures of human falling motions based on the machine learning, such as the support vector machine and the neural network. Four distinction procedures of falling motions are proposed in the paper, and the procedures use one axis gyro sensor and two axis accelerometers. Three-types of falling motions which cause a femoral neck fracture for elderly people are considered in the paper. The detection performance of the four procedures are evaluated for the three-types of falling motions, and the procedure based on the neural network considering time series of sensor signals provides 100% detection rate for the three-types of falling motions.</description><subject>Accelerometer</subject><subject>Falling Distinction</subject><subject>Femoral Neck Fracture</subject><subject>Gyro Sensor</subject><subject>Hip Protector</subject><subject>Learning</subject><subject>Neural Network</subject><subject>Pattern Recognition</subject><subject>Support Vector Machine</subject><issn>0387-5024</issn><issn>1884-8354</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNo9kDtPwzAUhS0EElXpyuwRhhS_HyMqjwKJigRsSJHj2K1p6qA4DP33JGrV6QznfFe6HwDXGM0x0fpuG7Ym2LkUcyoROwMTrBTLFOXsHEwQVTLjiLBLMEspVAghTYWmagK-VzHLQ3TwIaQ-RNuHNsLC9Zu2TrD1cPm3MxE-maYJcQ2LduwTrPawMHYzcrkzXRy6m8LZjYnBmgZ-7FPvdun2Clx40yQ3O-YUfD09fi6WWb56flnc55klhLBMiprV2DtlvfLCe1pxiZn1WDLEUW2x4o5YKYWwNa8dJ6ZG3mtnNa1dhTmdgvnhru3alDrny98u7Ey3LzEqRz3lQU8pRTnqGYD3A_CTerN2p7np-mAbd5xjLfWISEnGeHsdvCGhMKVEn6bD013pIv0HJXt15Q</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>AOYAGI, Shunichi</creator><creator>CHIDA, Yuichi</creator><creator>YATSUNAMI, Tetsuji</creator><creator>NISHIMURA, Teruyuki</creator><creator>ASAWA, Satoshi</creator><creator>ISHIHARA, Yoshiyuki</creator><creator>KOBAYASHI, Hidetoshi</creator><creator>YOSHIMATSU, Shunichi</creator><creator>OYA, Masahiro</creator><general>The Japan Society of Mechanical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2010</creationdate><title>On-Line Distinction Methods of Human Falling Motions by Machine Learning(Mechanical Systems)</title><author>AOYAGI, Shunichi ; CHIDA, Yuichi ; YATSUNAMI, Tetsuji ; NISHIMURA, Teruyuki ; ASAWA, Satoshi ; ISHIHARA, Yoshiyuki ; KOBAYASHI, Hidetoshi ; YOSHIMATSU, Shunichi ; OYA, Masahiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2224-76d4d1fe8cf8f6ff3b5714cf174050dc185e2c7766cd5de52ad0ff9ec93deb153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; jpn</language><creationdate>2010</creationdate><topic>Accelerometer</topic><topic>Falling Distinction</topic><topic>Femoral Neck Fracture</topic><topic>Gyro Sensor</topic><topic>Hip Protector</topic><topic>Learning</topic><topic>Neural Network</topic><topic>Pattern Recognition</topic><topic>Support Vector Machine</topic><toplevel>online_resources</toplevel><creatorcontrib>AOYAGI, Shunichi</creatorcontrib><creatorcontrib>CHIDA, Yuichi</creatorcontrib><creatorcontrib>YATSUNAMI, Tetsuji</creatorcontrib><creatorcontrib>NISHIMURA, Teruyuki</creatorcontrib><creatorcontrib>ASAWA, Satoshi</creatorcontrib><creatorcontrib>ISHIHARA, Yoshiyuki</creatorcontrib><creatorcontrib>KOBAYASHI, Hidetoshi</creatorcontrib><creatorcontrib>YOSHIMATSU, Shunichi</creatorcontrib><creatorcontrib>OYA, Masahiro</creatorcontrib><collection>CrossRef</collection><jtitle>Transactions of the Japan Society of Mechanical Engineers Series C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>AOYAGI, Shunichi</au><au>CHIDA, Yuichi</au><au>YATSUNAMI, Tetsuji</au><au>NISHIMURA, Teruyuki</au><au>ASAWA, Satoshi</au><au>ISHIHARA, Yoshiyuki</au><au>KOBAYASHI, Hidetoshi</au><au>YOSHIMATSU, Shunichi</au><au>OYA, Masahiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On-Line Distinction Methods of Human Falling Motions by Machine Learning(Mechanical Systems)</atitle><jtitle>Transactions of the Japan Society of Mechanical Engineers Series C</jtitle><addtitle>JSMET</addtitle><date>2010</date><risdate>2010</risdate><volume>76</volume><issue>772</issue><spage>3704</spage><epage>3713</epage><pages>3704-3713</pages><issn>0387-5024</issn><eissn>1884-8354</eissn><abstract>A hip protector system using an airbag for prevention of a femoral neck fracture is under developing. In the system, the instance detection of falling motions by using an appropriate on-line algorithm based on sensor signals is required. The purpose of this paper is to propose on-line distinction procedures of human falling motions based on the machine learning, such as the support vector machine and the neural network. Four distinction procedures of falling motions are proposed in the paper, and the procedures use one axis gyro sensor and two axis accelerometers. Three-types of falling motions which cause a femoral neck fracture for elderly people are considered in the paper. The detection performance of the four procedures are evaluated for the three-types of falling motions, and the procedure based on the neural network considering time series of sensor signals provides 100% detection rate for the three-types of falling motions.</abstract><pub>The Japan Society of Mechanical Engineers</pub><doi>10.1299/kikaic.76.3704</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0387-5024
ispartof Transactions of the Japan Society of Mechanical Engineers Series C, 2010/12/25, Vol.76(772), pp.3704-3713
issn 0387-5024
1884-8354
language eng ; jpn
recordid cdi_crossref_primary_10_1299_kikaic_76_3704
source J-STAGE Free; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accelerometer
Falling Distinction
Femoral Neck Fracture
Gyro Sensor
Hip Protector
Learning
Neural Network
Pattern Recognition
Support Vector Machine
title On-Line Distinction Methods of Human Falling Motions by Machine Learning(Mechanical Systems)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T01%3A17%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On-Line%20Distinction%20Methods%20of%20Human%20Falling%20Motions%20by%20Machine%20Learning(Mechanical%20Systems)&rft.jtitle=Transactions%20of%20the%20Japan%20Society%20of%20Mechanical%20Engineers%20Series%20C&rft.au=AOYAGI,%20Shunichi&rft.date=2010&rft.volume=76&rft.issue=772&rft.spage=3704&rft.epage=3713&rft.pages=3704-3713&rft.issn=0387-5024&rft.eissn=1884-8354&rft_id=info:doi/10.1299/kikaic.76.3704&rft_dat=%3Cjstage_cross%3Earticle_kikaic1979_76_772_76_KJ00006813329_article_char_en%3C/jstage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true