Analytical Approach to Solve an Inverse Problem for One-Dimensional Heat Conduction Based on Laplace Transformation : Application to Cylindrical and Spherical Coordinates
An analytical method has been developed to solve an inverse problem for one-dimensional heat conduction in cylindrical and spherical coordinates by using Laplace transformation. This method successfully derives the inverse solution by which the surface temperature and heat flux can be predicted well...
Gespeichert in:
Veröffentlicht in: | Nihon Kikai Gakkai rombunshuu. B hen 2001/10/25, Vol.67(662), pp.2495-2502 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng ; jpn |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2502 |
---|---|
container_issue | 662 |
container_start_page | 2495 |
container_title | Nihon Kikai Gakkai rombunshuu. B hen |
container_volume | 67 |
creator | ARIMA, Hirofumi MONDE, Masanori MITSUTAKE, Yuhichi |
description | An analytical method has been developed to solve an inverse problem for one-dimensional heat conduction in cylindrical and spherical coordinates by using Laplace transformation. This method successfully derives the inverse solution by which the surface temperature and heat flux can be predicted well for any kind of boundary condition with a constant initial condition. The inverse solution obtained by the temperatures at two different measuring points can predict the surface temperature and heat flux with higher accuracy than that at a single measuring point, although the single measuring point is enough for the cylindrical and spherical coordinates to predict them. The same order of accuracy of estimation has been maintained between cylindrical and spherical coordinate. |
doi_str_mv | 10.1299/kikaib.67.2495 |
format | Article |
fullrecord | <record><control><sourceid>jstage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1299_kikaib_67_2495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>article_kikaib1979_67_662_67_662_2495_article_char_en</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2495-50e1eb654425f827ac51856a43bc2a963a120be5038298e46f2f47fa0edf0c033</originalsourceid><addsrcrecordid>eNo9kN1O3DAQha2KSl1RbnvtF8jin8SJe7cEKKgrUQl6HU2cSdfgtSM7IO0r9Snr7FKuxmOfb47nEPKNszUXWl--2Bew_VrVa1Hq6hNZ8aYpi0aW6oysmGzqomJcfSEXKdmeMaal0rJekb8bD-4wWwOObqYpBjA7Ogf6GNwbUvD03r9hTEh_xdA73NMxRPrgsbi2e_TJhozTO4SZtsEPr2bON_QKEg40H7YwOTBInyL4lMk9HN-_L1Yuex677NYenPVDPP4C_EAfpx2eujaEOFgPM6av5PMILuHFez0nv29vntq7Yvvw477dbAuzrJ73RI69qspSVGMjajAVbyoFpeyNAK0kcMF6rHIoQjdYqlGMZT0Cw2Fkhkl5TtanuSaGlCKO3RTtHuKh46xbwu5OYXeq7hbHDPw8Ac9phj_4IYeYc3X4Lue61guilPhfFvpDZXYQO_TyH2izkMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Analytical Approach to Solve an Inverse Problem for One-Dimensional Heat Conduction Based on Laplace Transformation : Application to Cylindrical and Spherical Coordinates</title><source>J-STAGE Free</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>ARIMA, Hirofumi ; MONDE, Masanori ; MITSUTAKE, Yuhichi</creator><creatorcontrib>ARIMA, Hirofumi ; MONDE, Masanori ; MITSUTAKE, Yuhichi</creatorcontrib><description>An analytical method has been developed to solve an inverse problem for one-dimensional heat conduction in cylindrical and spherical coordinates by using Laplace transformation. This method successfully derives the inverse solution by which the surface temperature and heat flux can be predicted well for any kind of boundary condition with a constant initial condition. The inverse solution obtained by the temperatures at two different measuring points can predict the surface temperature and heat flux with higher accuracy than that at a single measuring point, although the single measuring point is enough for the cylindrical and spherical coordinates to predict them. The same order of accuracy of estimation has been maintained between cylindrical and spherical coordinate.</description><identifier>ISSN: 0387-5016</identifier><identifier>EISSN: 1884-8346</identifier><identifier>DOI: 10.1299/kikaib.67.2495</identifier><language>eng ; jpn</language><publisher>The Japan Society of Mechanical Engineers</publisher><subject>Spherical Coordinate</subject><ispartof>Transactions of the Japan Society of Mechanical Engineers Series B, 2001/10/25, Vol.67(662), pp.2495-2502</ispartof><rights>The Japan Society of Mechanical Engineers</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2495-50e1eb654425f827ac51856a43bc2a963a120be5038298e46f2f47fa0edf0c033</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1881,4022,27922,27923,27924</link.rule.ids></links><search><creatorcontrib>ARIMA, Hirofumi</creatorcontrib><creatorcontrib>MONDE, Masanori</creatorcontrib><creatorcontrib>MITSUTAKE, Yuhichi</creatorcontrib><title>Analytical Approach to Solve an Inverse Problem for One-Dimensional Heat Conduction Based on Laplace Transformation : Application to Cylindrical and Spherical Coordinates</title><title>Nihon Kikai Gakkai rombunshuu. B hen</title><addtitle>JSMET</addtitle><description>An analytical method has been developed to solve an inverse problem for one-dimensional heat conduction in cylindrical and spherical coordinates by using Laplace transformation. This method successfully derives the inverse solution by which the surface temperature and heat flux can be predicted well for any kind of boundary condition with a constant initial condition. The inverse solution obtained by the temperatures at two different measuring points can predict the surface temperature and heat flux with higher accuracy than that at a single measuring point, although the single measuring point is enough for the cylindrical and spherical coordinates to predict them. The same order of accuracy of estimation has been maintained between cylindrical and spherical coordinate.</description><subject>Spherical Coordinate</subject><issn>0387-5016</issn><issn>1884-8346</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNo9kN1O3DAQha2KSl1RbnvtF8jin8SJe7cEKKgrUQl6HU2cSdfgtSM7IO0r9Snr7FKuxmOfb47nEPKNszUXWl--2Bew_VrVa1Hq6hNZ8aYpi0aW6oysmGzqomJcfSEXKdmeMaal0rJekb8bD-4wWwOObqYpBjA7Ogf6GNwbUvD03r9hTEh_xdA73NMxRPrgsbi2e_TJhozTO4SZtsEPr2bON_QKEg40H7YwOTBInyL4lMk9HN-_L1Yuex677NYenPVDPP4C_EAfpx2eujaEOFgPM6av5PMILuHFez0nv29vntq7Yvvw477dbAuzrJ73RI69qspSVGMjajAVbyoFpeyNAK0kcMF6rHIoQjdYqlGMZT0Cw2Fkhkl5TtanuSaGlCKO3RTtHuKh46xbwu5OYXeq7hbHDPw8Ac9phj_4IYeYc3X4Lue61guilPhfFvpDZXYQO_TyH2izkMw</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>ARIMA, Hirofumi</creator><creator>MONDE, Masanori</creator><creator>MITSUTAKE, Yuhichi</creator><general>The Japan Society of Mechanical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2001</creationdate><title>Analytical Approach to Solve an Inverse Problem for One-Dimensional Heat Conduction Based on Laplace Transformation : Application to Cylindrical and Spherical Coordinates</title><author>ARIMA, Hirofumi ; MONDE, Masanori ; MITSUTAKE, Yuhichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2495-50e1eb654425f827ac51856a43bc2a963a120be5038298e46f2f47fa0edf0c033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; jpn</language><creationdate>2001</creationdate><topic>Spherical Coordinate</topic><toplevel>online_resources</toplevel><creatorcontrib>ARIMA, Hirofumi</creatorcontrib><creatorcontrib>MONDE, Masanori</creatorcontrib><creatorcontrib>MITSUTAKE, Yuhichi</creatorcontrib><collection>CrossRef</collection><jtitle>Nihon Kikai Gakkai rombunshuu. B hen</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ARIMA, Hirofumi</au><au>MONDE, Masanori</au><au>MITSUTAKE, Yuhichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical Approach to Solve an Inverse Problem for One-Dimensional Heat Conduction Based on Laplace Transformation : Application to Cylindrical and Spherical Coordinates</atitle><jtitle>Nihon Kikai Gakkai rombunshuu. B hen</jtitle><addtitle>JSMET</addtitle><date>2001</date><risdate>2001</risdate><volume>67</volume><issue>662</issue><spage>2495</spage><epage>2502</epage><pages>2495-2502</pages><issn>0387-5016</issn><eissn>1884-8346</eissn><abstract>An analytical method has been developed to solve an inverse problem for one-dimensional heat conduction in cylindrical and spherical coordinates by using Laplace transformation. This method successfully derives the inverse solution by which the surface temperature and heat flux can be predicted well for any kind of boundary condition with a constant initial condition. The inverse solution obtained by the temperatures at two different measuring points can predict the surface temperature and heat flux with higher accuracy than that at a single measuring point, although the single measuring point is enough for the cylindrical and spherical coordinates to predict them. The same order of accuracy of estimation has been maintained between cylindrical and spherical coordinate.</abstract><pub>The Japan Society of Mechanical Engineers</pub><doi>10.1299/kikaib.67.2495</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0387-5016 |
ispartof | Transactions of the Japan Society of Mechanical Engineers Series B, 2001/10/25, Vol.67(662), pp.2495-2502 |
issn | 0387-5016 1884-8346 |
language | eng ; jpn |
recordid | cdi_crossref_primary_10_1299_kikaib_67_2495 |
source | J-STAGE Free; EZB-FREE-00999 freely available EZB journals |
subjects | Spherical Coordinate |
title | Analytical Approach to Solve an Inverse Problem for One-Dimensional Heat Conduction Based on Laplace Transformation : Application to Cylindrical and Spherical Coordinates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T00%3A08%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20Approach%20to%20Solve%20an%20Inverse%20Problem%20for%20One-Dimensional%20Heat%20Conduction%20Based%20on%20Laplace%20Transformation%20:%20Application%20to%20Cylindrical%20and%20Spherical%20Coordinates&rft.jtitle=Nihon%20Kikai%20Gakkai%20rombunshuu.%20B%20hen&rft.au=ARIMA,%20Hirofumi&rft.date=2001&rft.volume=67&rft.issue=662&rft.spage=2495&rft.epage=2502&rft.pages=2495-2502&rft.issn=0387-5016&rft.eissn=1884-8346&rft_id=info:doi/10.1299/kikaib.67.2495&rft_dat=%3Cjstage_cross%3Earticle_kikaib1979_67_662_67_662_2495_article_char_en%3C/jstage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |