Extension of Mori-Tanaka Theorem to Crack Problem: 4th Report, Macroscopic Elastic Moduli of the.Unidirectional Fiber-reinforced Composite Material Containing Matrix Cracking

For a unidirectional fiber-reinforced composite material containing matrix cracks, the differential equation for the macroscopic total strain of the material is derived with respect to the crack density by adding only a small amount of cracks into the matrix and by adopting the incremental form of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS Series A 2005/01/25, Vol.71(701), pp.149-156
Hauptverfasser: MINAMI, Aki, ARAKI, Shigetoshi, IWAMOTO, Masaharu
Format: Artikel
Sprache:eng ; jpn
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 156
container_issue 701
container_start_page 149
container_title TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS Series A
container_volume 71
creator MINAMI, Aki
ARAKI, Shigetoshi
IWAMOTO, Masaharu
description For a unidirectional fiber-reinforced composite material containing matrix cracks, the differential equation for the macroscopic total strain of the material is derived with respect to the crack density by adding only a small amount of cracks into the matrix and by adopting the incremental form of the Mori-Tanaka theorem to the resultant model of the material. By solving the differential equation, the macroscopic elastic moduli are formulated as a function of crack density. By comparing the resulting macroscopic elastic moduli with those obtained by Taya's method, the range of crack density in which Taya's method is applicable is clarified. This range becomes wider when the volume fraction and the aspect ratio of fibers increase.
doi_str_mv 10.1299/kikaia.71.149
format Article
fullrecord <record><control><sourceid>jstage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1299_kikaia_71_149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>article_kikaia1979_71_701_71_701_149_article_char_en</sourcerecordid><originalsourceid>FETCH-LOGICAL-c162n-3237de5e10767e4e34bdeea25060780d9bf8e69b01195992b870b617c8cc3c983</originalsourceid><addsrcrecordid>eNo9j71OwzAURi0EElXpyJ4XcLk3TmJ7RFX5UxEMYbZs94aatDGyM8Db06ql01nO90mHsVuEOZZa3_Wht8HOJc6x0hdsgkpVXAmhLtkEhJK8BlDXbJZzcAACJUJTThguf0YacohDEbviNabAWzvY3hbthmKiXTHGYpGs74v3FN2WdjfsqrPbTLMTp-zjYdkunvjq7fF5cb_iHpty4KIUck01IchGUkWicmsiW9bQgFSw1q5T1GgHiLrWunRKgmtQeuW98FqJKePHX59izok6853CzqZfg2AOyeaYbCSaffLefzn6X3m0n3S2bRqD39LJRi31YSEB_7EfnyW_scnQIP4AQLhjEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Extension of Mori-Tanaka Theorem to Crack Problem: 4th Report, Macroscopic Elastic Moduli of the.Unidirectional Fiber-reinforced Composite Material Containing Matrix Cracking</title><source>J-STAGE日本語サイト (Free Access)</source><source>EZB Electronic Journals Library</source><creator>MINAMI, Aki ; ARAKI, Shigetoshi ; IWAMOTO, Masaharu</creator><creatorcontrib>MINAMI, Aki ; ARAKI, Shigetoshi ; IWAMOTO, Masaharu</creatorcontrib><description>For a unidirectional fiber-reinforced composite material containing matrix cracks, the differential equation for the macroscopic total strain of the material is derived with respect to the crack density by adding only a small amount of cracks into the matrix and by adopting the incremental form of the Mori-Tanaka theorem to the resultant model of the material. By solving the differential equation, the macroscopic elastic moduli are formulated as a function of crack density. By comparing the resulting macroscopic elastic moduli with those obtained by Taya's method, the range of crack density in which Taya's method is applicable is clarified. This range becomes wider when the volume fraction and the aspect ratio of fibers increase.</description><identifier>ISSN: 0387-5008</identifier><identifier>EISSN: 1884-8338</identifier><identifier>DOI: 10.1299/kikaia.71.149</identifier><language>eng ; jpn</language><publisher>The Japan Society of Mechanical Engineers</publisher><subject>Aspect Ratio ; Crack Density ; Elastic Moduli ; Fiber-reinforced Composites ; Incremental Form of the Mori-Tanaka Theorem ; Matrix Cracking ; Micromechanics</subject><ispartof>Transactions of the Japan Society of Mechanical Engineers Series A, 2005/01/25, Vol.71(701), pp.149-156</ispartof><rights>The Japan Society of Mechanical Engineers</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1881,4021,27921,27922,27923</link.rule.ids></links><search><creatorcontrib>MINAMI, Aki</creatorcontrib><creatorcontrib>ARAKI, Shigetoshi</creatorcontrib><creatorcontrib>IWAMOTO, Masaharu</creatorcontrib><title>Extension of Mori-Tanaka Theorem to Crack Problem: 4th Report, Macroscopic Elastic Moduli of the.Unidirectional Fiber-reinforced Composite Material Containing Matrix Cracking</title><title>TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS Series A</title><addtitle>JSMET</addtitle><description>For a unidirectional fiber-reinforced composite material containing matrix cracks, the differential equation for the macroscopic total strain of the material is derived with respect to the crack density by adding only a small amount of cracks into the matrix and by adopting the incremental form of the Mori-Tanaka theorem to the resultant model of the material. By solving the differential equation, the macroscopic elastic moduli are formulated as a function of crack density. By comparing the resulting macroscopic elastic moduli with those obtained by Taya's method, the range of crack density in which Taya's method is applicable is clarified. This range becomes wider when the volume fraction and the aspect ratio of fibers increase.</description><subject>Aspect Ratio</subject><subject>Crack Density</subject><subject>Elastic Moduli</subject><subject>Fiber-reinforced Composites</subject><subject>Incremental Form of the Mori-Tanaka Theorem</subject><subject>Matrix Cracking</subject><subject>Micromechanics</subject><issn>0387-5008</issn><issn>1884-8338</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNo9j71OwzAURi0EElXpyJ4XcLk3TmJ7RFX5UxEMYbZs94aatDGyM8Db06ql01nO90mHsVuEOZZa3_Wht8HOJc6x0hdsgkpVXAmhLtkEhJK8BlDXbJZzcAACJUJTThguf0YacohDEbviNabAWzvY3hbthmKiXTHGYpGs74v3FN2WdjfsqrPbTLMTp-zjYdkunvjq7fF5cb_iHpty4KIUck01IchGUkWicmsiW9bQgFSw1q5T1GgHiLrWunRKgmtQeuW98FqJKePHX59izok6853CzqZfg2AOyeaYbCSaffLefzn6X3m0n3S2bRqD39LJRi31YSEB_7EfnyW_scnQIP4AQLhjEA</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>MINAMI, Aki</creator><creator>ARAKI, Shigetoshi</creator><creator>IWAMOTO, Masaharu</creator><general>The Japan Society of Mechanical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2005</creationdate><title>Extension of Mori-Tanaka Theorem to Crack Problem</title><author>MINAMI, Aki ; ARAKI, Shigetoshi ; IWAMOTO, Masaharu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c162n-3237de5e10767e4e34bdeea25060780d9bf8e69b01195992b870b617c8cc3c983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; jpn</language><creationdate>2005</creationdate><topic>Aspect Ratio</topic><topic>Crack Density</topic><topic>Elastic Moduli</topic><topic>Fiber-reinforced Composites</topic><topic>Incremental Form of the Mori-Tanaka Theorem</topic><topic>Matrix Cracking</topic><topic>Micromechanics</topic><toplevel>online_resources</toplevel><creatorcontrib>MINAMI, Aki</creatorcontrib><creatorcontrib>ARAKI, Shigetoshi</creatorcontrib><creatorcontrib>IWAMOTO, Masaharu</creatorcontrib><collection>CrossRef</collection><jtitle>TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS Series A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MINAMI, Aki</au><au>ARAKI, Shigetoshi</au><au>IWAMOTO, Masaharu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extension of Mori-Tanaka Theorem to Crack Problem: 4th Report, Macroscopic Elastic Moduli of the.Unidirectional Fiber-reinforced Composite Material Containing Matrix Cracking</atitle><jtitle>TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS Series A</jtitle><addtitle>JSMET</addtitle><date>2005</date><risdate>2005</risdate><volume>71</volume><issue>701</issue><spage>149</spage><epage>156</epage><pages>149-156</pages><issn>0387-5008</issn><eissn>1884-8338</eissn><abstract>For a unidirectional fiber-reinforced composite material containing matrix cracks, the differential equation for the macroscopic total strain of the material is derived with respect to the crack density by adding only a small amount of cracks into the matrix and by adopting the incremental form of the Mori-Tanaka theorem to the resultant model of the material. By solving the differential equation, the macroscopic elastic moduli are formulated as a function of crack density. By comparing the resulting macroscopic elastic moduli with those obtained by Taya's method, the range of crack density in which Taya's method is applicable is clarified. This range becomes wider when the volume fraction and the aspect ratio of fibers increase.</abstract><pub>The Japan Society of Mechanical Engineers</pub><doi>10.1299/kikaia.71.149</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0387-5008
ispartof Transactions of the Japan Society of Mechanical Engineers Series A, 2005/01/25, Vol.71(701), pp.149-156
issn 0387-5008
1884-8338
language eng ; jpn
recordid cdi_crossref_primary_10_1299_kikaia_71_149
source J-STAGE日本語サイト (Free Access); EZB Electronic Journals Library
subjects Aspect Ratio
Crack Density
Elastic Moduli
Fiber-reinforced Composites
Incremental Form of the Mori-Tanaka Theorem
Matrix Cracking
Micromechanics
title Extension of Mori-Tanaka Theorem to Crack Problem: 4th Report, Macroscopic Elastic Moduli of the.Unidirectional Fiber-reinforced Composite Material Containing Matrix Cracking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T17%3A19%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extension%20of%20Mori-Tanaka%20Theorem%20to%20Crack%20Problem:%204th%20Report,%20Macroscopic%20Elastic%20Moduli%20of%20the.Unidirectional%20Fiber-reinforced%20Composite%20Material%20Containing%20Matrix%20Cracking&rft.jtitle=TRANSACTIONS%20OF%20THE%20JAPAN%20SOCIETY%20OF%20MECHANICAL%20ENGINEERS%20Series%20A&rft.au=MINAMI,%20Aki&rft.date=2005&rft.volume=71&rft.issue=701&rft.spage=149&rft.epage=156&rft.pages=149-156&rft.issn=0387-5008&rft.eissn=1884-8338&rft_id=info:doi/10.1299/kikaia.71.149&rft_dat=%3Cjstage_cross%3Earticle_kikaia1979_71_701_71_701_149_article_char_en%3C/jstage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true