Extension of Mori-Tanaka Theorem to Crack Problem: 5th Report, Macroscopic Elastic Moduli of the Material Containing Mutual Perpendicular Penny-Shaped Cracks

A partial differential equation is derived for the macroscopic total strains of a material containing mutual perpendicular penny-shaped cracks with respect to the crack densities of the cracks by using the incremental form of the Mori-Tanaka theorem. By solving the partial differential equation, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS Series A 2005/10/25, Vol.71(710), pp.1390-1398
Hauptverfasser: MINAMI, Aki, ARAKI, Shigetoshi, IWAMOTO, Masaharu
Format: Artikel
Sprache:eng ; jpn
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1398
container_issue 710
container_start_page 1390
container_title TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS Series A
container_volume 71
creator MINAMI, Aki
ARAKI, Shigetoshi
IWAMOTO, Masaharu
description A partial differential equation is derived for the macroscopic total strains of a material containing mutual perpendicular penny-shaped cracks with respect to the crack densities of the cracks by using the incremental form of the Mori-Tanaka theorem. By solving the partial differential equation, the macroscopic total strain, the average interaction stress and hence the macroscopic elastic moduli are formulated as a function of the crack densities of the cracks. On the contrary to the results obtained by the ordinary Mori-Tanaka theorem, the resultant macroscopic elastic muduli asymptotically tend to zero as the crack densities of the cracks increase. The present results are in good agreement with the numerical results by means of the differential scheme when the magnitudes of the crack densities of the mutual perpendicular penny-shaped cracks are equal to each other. The volume fraction of the randomly oriented penny-shaped cracks in physical meaning is obtained by comparing the resultant interaction stress with that derived from the Mori-Tanaka theorem.
doi_str_mv 10.1299/kikaia.71.1390
format Article
fullrecord <record><control><sourceid>jstage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1299_kikaia_71_1390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>article_kikaia1979_71_710_71_710_1390_article_char_en</sourcerecordid><originalsourceid>FETCH-LOGICAL-c107n-e5c64554bb6bd160a6fbb04cde9a75793860216997926bd8e4e666560dfff7753</originalsourceid><addsrcrecordid>eNo9jztPwzAURi0EElXpypw_kHBvHL9GVJWHKIKhzJbt2tSkTZCdAf49iVo6fcs59-oQcotQYa3UXRtbE00lsEKq4ILMUMqmlJTKSzIDKkXJAOQ1WeQcLQBFgcDrGcHVz-C7HPuu6EPx2qdYbkxnWlNsdr5P_lAMfbFMxrXFe-rt3h9uyFUw--wXp52Tj4fVZvlUrt8en5f369IhiK70zPGGscZabrfIwfBgLTRu65URTCgqOdTIlRKqHgnpG885Zxy2IQQhGJ2T6njXpT7n5IP-TvFg0q9G0FOzPjZrgXpqHoWXo_CVB_Ppz7hJQ3R7f8JxfDgpY___TPaZcjuTtO_oH2m2Y98</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Extension of Mori-Tanaka Theorem to Crack Problem: 5th Report, Macroscopic Elastic Moduli of the Material Containing Mutual Perpendicular Penny-Shaped Cracks</title><source>J-STAGE Free</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>MINAMI, Aki ; ARAKI, Shigetoshi ; IWAMOTO, Masaharu</creator><creatorcontrib>MINAMI, Aki ; ARAKI, Shigetoshi ; IWAMOTO, Masaharu</creatorcontrib><description>A partial differential equation is derived for the macroscopic total strains of a material containing mutual perpendicular penny-shaped cracks with respect to the crack densities of the cracks by using the incremental form of the Mori-Tanaka theorem. By solving the partial differential equation, the macroscopic total strain, the average interaction stress and hence the macroscopic elastic moduli are formulated as a function of the crack densities of the cracks. On the contrary to the results obtained by the ordinary Mori-Tanaka theorem, the resultant macroscopic elastic muduli asymptotically tend to zero as the crack densities of the cracks increase. The present results are in good agreement with the numerical results by means of the differential scheme when the magnitudes of the crack densities of the mutual perpendicular penny-shaped cracks are equal to each other. The volume fraction of the randomly oriented penny-shaped cracks in physical meaning is obtained by comparing the resultant interaction stress with that derived from the Mori-Tanaka theorem.</description><identifier>ISSN: 0387-5008</identifier><identifier>EISSN: 1884-8338</identifier><identifier>DOI: 10.1299/kikaia.71.1390</identifier><language>eng ; jpn</language><publisher>The Japan Society of Mechanical Engineers</publisher><subject>Differential Scheme ; Elastic Moduli ; Macroscopic Total Strain ; Micromechanics ; Mori-Tanaka Theorem ; Mutual Perpendicular Penny-shaped Cracks</subject><ispartof>Transactions of the Japan Society of Mechanical Engineers Series A, 2005/10/25, Vol.71(710), pp.1390-1398</ispartof><rights>The Japan Society of Mechanical Engineers</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1883,27924,27925</link.rule.ids></links><search><creatorcontrib>MINAMI, Aki</creatorcontrib><creatorcontrib>ARAKI, Shigetoshi</creatorcontrib><creatorcontrib>IWAMOTO, Masaharu</creatorcontrib><title>Extension of Mori-Tanaka Theorem to Crack Problem: 5th Report, Macroscopic Elastic Moduli of the Material Containing Mutual Perpendicular Penny-Shaped Cracks</title><title>TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS Series A</title><addtitle>JSMET</addtitle><description>A partial differential equation is derived for the macroscopic total strains of a material containing mutual perpendicular penny-shaped cracks with respect to the crack densities of the cracks by using the incremental form of the Mori-Tanaka theorem. By solving the partial differential equation, the macroscopic total strain, the average interaction stress and hence the macroscopic elastic moduli are formulated as a function of the crack densities of the cracks. On the contrary to the results obtained by the ordinary Mori-Tanaka theorem, the resultant macroscopic elastic muduli asymptotically tend to zero as the crack densities of the cracks increase. The present results are in good agreement with the numerical results by means of the differential scheme when the magnitudes of the crack densities of the mutual perpendicular penny-shaped cracks are equal to each other. The volume fraction of the randomly oriented penny-shaped cracks in physical meaning is obtained by comparing the resultant interaction stress with that derived from the Mori-Tanaka theorem.</description><subject>Differential Scheme</subject><subject>Elastic Moduli</subject><subject>Macroscopic Total Strain</subject><subject>Micromechanics</subject><subject>Mori-Tanaka Theorem</subject><subject>Mutual Perpendicular Penny-shaped Cracks</subject><issn>0387-5008</issn><issn>1884-8338</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNo9jztPwzAURi0EElXpypw_kHBvHL9GVJWHKIKhzJbt2tSkTZCdAf49iVo6fcs59-oQcotQYa3UXRtbE00lsEKq4ILMUMqmlJTKSzIDKkXJAOQ1WeQcLQBFgcDrGcHVz-C7HPuu6EPx2qdYbkxnWlNsdr5P_lAMfbFMxrXFe-rt3h9uyFUw--wXp52Tj4fVZvlUrt8en5f369IhiK70zPGGscZabrfIwfBgLTRu65URTCgqOdTIlRKqHgnpG885Zxy2IQQhGJ2T6njXpT7n5IP-TvFg0q9G0FOzPjZrgXpqHoWXo_CVB_Ppz7hJQ3R7f8JxfDgpY___TPaZcjuTtO_oH2m2Y98</recordid><startdate>20051025</startdate><enddate>20051025</enddate><creator>MINAMI, Aki</creator><creator>ARAKI, Shigetoshi</creator><creator>IWAMOTO, Masaharu</creator><general>The Japan Society of Mechanical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20051025</creationdate><title>Extension of Mori-Tanaka Theorem to Crack Problem</title><author>MINAMI, Aki ; ARAKI, Shigetoshi ; IWAMOTO, Masaharu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c107n-e5c64554bb6bd160a6fbb04cde9a75793860216997926bd8e4e666560dfff7753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; jpn</language><creationdate>2005</creationdate><topic>Differential Scheme</topic><topic>Elastic Moduli</topic><topic>Macroscopic Total Strain</topic><topic>Micromechanics</topic><topic>Mori-Tanaka Theorem</topic><topic>Mutual Perpendicular Penny-shaped Cracks</topic><toplevel>online_resources</toplevel><creatorcontrib>MINAMI, Aki</creatorcontrib><creatorcontrib>ARAKI, Shigetoshi</creatorcontrib><creatorcontrib>IWAMOTO, Masaharu</creatorcontrib><collection>CrossRef</collection><jtitle>TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS Series A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MINAMI, Aki</au><au>ARAKI, Shigetoshi</au><au>IWAMOTO, Masaharu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extension of Mori-Tanaka Theorem to Crack Problem: 5th Report, Macroscopic Elastic Moduli of the Material Containing Mutual Perpendicular Penny-Shaped Cracks</atitle><jtitle>TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS Series A</jtitle><addtitle>JSMET</addtitle><date>2005-10-25</date><risdate>2005</risdate><volume>71</volume><issue>710</issue><spage>1390</spage><epage>1398</epage><pages>1390-1398</pages><issn>0387-5008</issn><eissn>1884-8338</eissn><abstract>A partial differential equation is derived for the macroscopic total strains of a material containing mutual perpendicular penny-shaped cracks with respect to the crack densities of the cracks by using the incremental form of the Mori-Tanaka theorem. By solving the partial differential equation, the macroscopic total strain, the average interaction stress and hence the macroscopic elastic moduli are formulated as a function of the crack densities of the cracks. On the contrary to the results obtained by the ordinary Mori-Tanaka theorem, the resultant macroscopic elastic muduli asymptotically tend to zero as the crack densities of the cracks increase. The present results are in good agreement with the numerical results by means of the differential scheme when the magnitudes of the crack densities of the mutual perpendicular penny-shaped cracks are equal to each other. The volume fraction of the randomly oriented penny-shaped cracks in physical meaning is obtained by comparing the resultant interaction stress with that derived from the Mori-Tanaka theorem.</abstract><pub>The Japan Society of Mechanical Engineers</pub><doi>10.1299/kikaia.71.1390</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0387-5008
ispartof Transactions of the Japan Society of Mechanical Engineers Series A, 2005/10/25, Vol.71(710), pp.1390-1398
issn 0387-5008
1884-8338
language eng ; jpn
recordid cdi_crossref_primary_10_1299_kikaia_71_1390
source J-STAGE Free; EZB-FREE-00999 freely available EZB journals
subjects Differential Scheme
Elastic Moduli
Macroscopic Total Strain
Micromechanics
Mori-Tanaka Theorem
Mutual Perpendicular Penny-shaped Cracks
title Extension of Mori-Tanaka Theorem to Crack Problem: 5th Report, Macroscopic Elastic Moduli of the Material Containing Mutual Perpendicular Penny-Shaped Cracks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A51%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extension%20of%20Mori-Tanaka%20Theorem%20to%20Crack%20Problem:%205th%20Report,%20Macroscopic%20Elastic%20Moduli%20of%20the%20Material%20Containing%20Mutual%20Perpendicular%20Penny-Shaped%20Cracks&rft.jtitle=TRANSACTIONS%20OF%20THE%20JAPAN%20SOCIETY%20OF%20MECHANICAL%20ENGINEERS%20Series%20A&rft.au=MINAMI,%20Aki&rft.date=2005-10-25&rft.volume=71&rft.issue=710&rft.spage=1390&rft.epage=1398&rft.pages=1390-1398&rft.issn=0387-5008&rft.eissn=1884-8338&rft_id=info:doi/10.1299/kikaia.71.1390&rft_dat=%3Cjstage_cross%3Earticle_kikaia1979_71_710_71_710_1390_article_char_en%3C/jstage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true