Extension of Mori-Tanaka Theorem to Crack Problem: 5th Report, Macroscopic Elastic Moduli of the Material Containing Mutual Perpendicular Penny-Shaped Cracks
A partial differential equation is derived for the macroscopic total strains of a material containing mutual perpendicular penny-shaped cracks with respect to the crack densities of the cracks by using the incremental form of the Mori-Tanaka theorem. By solving the partial differential equation, the...
Gespeichert in:
Veröffentlicht in: | TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS Series A 2005/10/25, Vol.71(710), pp.1390-1398 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng ; jpn |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1398 |
---|---|
container_issue | 710 |
container_start_page | 1390 |
container_title | TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS Series A |
container_volume | 71 |
creator | MINAMI, Aki ARAKI, Shigetoshi IWAMOTO, Masaharu |
description | A partial differential equation is derived for the macroscopic total strains of a material containing mutual perpendicular penny-shaped cracks with respect to the crack densities of the cracks by using the incremental form of the Mori-Tanaka theorem. By solving the partial differential equation, the macroscopic total strain, the average interaction stress and hence the macroscopic elastic moduli are formulated as a function of the crack densities of the cracks. On the contrary to the results obtained by the ordinary Mori-Tanaka theorem, the resultant macroscopic elastic muduli asymptotically tend to zero as the crack densities of the cracks increase. The present results are in good agreement with the numerical results by means of the differential scheme when the magnitudes of the crack densities of the mutual perpendicular penny-shaped cracks are equal to each other. The volume fraction of the randomly oriented penny-shaped cracks in physical meaning is obtained by comparing the resultant interaction stress with that derived from the Mori-Tanaka theorem. |
doi_str_mv | 10.1299/kikaia.71.1390 |
format | Article |
fullrecord | <record><control><sourceid>jstage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1299_kikaia_71_1390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>article_kikaia1979_71_710_71_710_1390_article_char_en</sourcerecordid><originalsourceid>FETCH-LOGICAL-c107n-e5c64554bb6bd160a6fbb04cde9a75793860216997926bd8e4e666560dfff7753</originalsourceid><addsrcrecordid>eNo9jztPwzAURi0EElXpypw_kHBvHL9GVJWHKIKhzJbt2tSkTZCdAf49iVo6fcs59-oQcotQYa3UXRtbE00lsEKq4ILMUMqmlJTKSzIDKkXJAOQ1WeQcLQBFgcDrGcHVz-C7HPuu6EPx2qdYbkxnWlNsdr5P_lAMfbFMxrXFe-rt3h9uyFUw--wXp52Tj4fVZvlUrt8en5f369IhiK70zPGGscZabrfIwfBgLTRu65URTCgqOdTIlRKqHgnpG885Zxy2IQQhGJ2T6njXpT7n5IP-TvFg0q9G0FOzPjZrgXpqHoWXo_CVB_Ppz7hJQ3R7f8JxfDgpY___TPaZcjuTtO_oH2m2Y98</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Extension of Mori-Tanaka Theorem to Crack Problem: 5th Report, Macroscopic Elastic Moduli of the Material Containing Mutual Perpendicular Penny-Shaped Cracks</title><source>J-STAGE Free</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>MINAMI, Aki ; ARAKI, Shigetoshi ; IWAMOTO, Masaharu</creator><creatorcontrib>MINAMI, Aki ; ARAKI, Shigetoshi ; IWAMOTO, Masaharu</creatorcontrib><description>A partial differential equation is derived for the macroscopic total strains of a material containing mutual perpendicular penny-shaped cracks with respect to the crack densities of the cracks by using the incremental form of the Mori-Tanaka theorem. By solving the partial differential equation, the macroscopic total strain, the average interaction stress and hence the macroscopic elastic moduli are formulated as a function of the crack densities of the cracks. On the contrary to the results obtained by the ordinary Mori-Tanaka theorem, the resultant macroscopic elastic muduli asymptotically tend to zero as the crack densities of the cracks increase. The present results are in good agreement with the numerical results by means of the differential scheme when the magnitudes of the crack densities of the mutual perpendicular penny-shaped cracks are equal to each other. The volume fraction of the randomly oriented penny-shaped cracks in physical meaning is obtained by comparing the resultant interaction stress with that derived from the Mori-Tanaka theorem.</description><identifier>ISSN: 0387-5008</identifier><identifier>EISSN: 1884-8338</identifier><identifier>DOI: 10.1299/kikaia.71.1390</identifier><language>eng ; jpn</language><publisher>The Japan Society of Mechanical Engineers</publisher><subject>Differential Scheme ; Elastic Moduli ; Macroscopic Total Strain ; Micromechanics ; Mori-Tanaka Theorem ; Mutual Perpendicular Penny-shaped Cracks</subject><ispartof>Transactions of the Japan Society of Mechanical Engineers Series A, 2005/10/25, Vol.71(710), pp.1390-1398</ispartof><rights>The Japan Society of Mechanical Engineers</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1883,27924,27925</link.rule.ids></links><search><creatorcontrib>MINAMI, Aki</creatorcontrib><creatorcontrib>ARAKI, Shigetoshi</creatorcontrib><creatorcontrib>IWAMOTO, Masaharu</creatorcontrib><title>Extension of Mori-Tanaka Theorem to Crack Problem: 5th Report, Macroscopic Elastic Moduli of the Material Containing Mutual Perpendicular Penny-Shaped Cracks</title><title>TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS Series A</title><addtitle>JSMET</addtitle><description>A partial differential equation is derived for the macroscopic total strains of a material containing mutual perpendicular penny-shaped cracks with respect to the crack densities of the cracks by using the incremental form of the Mori-Tanaka theorem. By solving the partial differential equation, the macroscopic total strain, the average interaction stress and hence the macroscopic elastic moduli are formulated as a function of the crack densities of the cracks. On the contrary to the results obtained by the ordinary Mori-Tanaka theorem, the resultant macroscopic elastic muduli asymptotically tend to zero as the crack densities of the cracks increase. The present results are in good agreement with the numerical results by means of the differential scheme when the magnitudes of the crack densities of the mutual perpendicular penny-shaped cracks are equal to each other. The volume fraction of the randomly oriented penny-shaped cracks in physical meaning is obtained by comparing the resultant interaction stress with that derived from the Mori-Tanaka theorem.</description><subject>Differential Scheme</subject><subject>Elastic Moduli</subject><subject>Macroscopic Total Strain</subject><subject>Micromechanics</subject><subject>Mori-Tanaka Theorem</subject><subject>Mutual Perpendicular Penny-shaped Cracks</subject><issn>0387-5008</issn><issn>1884-8338</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNo9jztPwzAURi0EElXpypw_kHBvHL9GVJWHKIKhzJbt2tSkTZCdAf49iVo6fcs59-oQcotQYa3UXRtbE00lsEKq4ILMUMqmlJTKSzIDKkXJAOQ1WeQcLQBFgcDrGcHVz-C7HPuu6EPx2qdYbkxnWlNsdr5P_lAMfbFMxrXFe-rt3h9uyFUw--wXp52Tj4fVZvlUrt8en5f369IhiK70zPGGscZabrfIwfBgLTRu65URTCgqOdTIlRKqHgnpG885Zxy2IQQhGJ2T6njXpT7n5IP-TvFg0q9G0FOzPjZrgXpqHoWXo_CVB_Ppz7hJQ3R7f8JxfDgpY___TPaZcjuTtO_oH2m2Y98</recordid><startdate>20051025</startdate><enddate>20051025</enddate><creator>MINAMI, Aki</creator><creator>ARAKI, Shigetoshi</creator><creator>IWAMOTO, Masaharu</creator><general>The Japan Society of Mechanical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20051025</creationdate><title>Extension of Mori-Tanaka Theorem to Crack Problem</title><author>MINAMI, Aki ; ARAKI, Shigetoshi ; IWAMOTO, Masaharu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c107n-e5c64554bb6bd160a6fbb04cde9a75793860216997926bd8e4e666560dfff7753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; jpn</language><creationdate>2005</creationdate><topic>Differential Scheme</topic><topic>Elastic Moduli</topic><topic>Macroscopic Total Strain</topic><topic>Micromechanics</topic><topic>Mori-Tanaka Theorem</topic><topic>Mutual Perpendicular Penny-shaped Cracks</topic><toplevel>online_resources</toplevel><creatorcontrib>MINAMI, Aki</creatorcontrib><creatorcontrib>ARAKI, Shigetoshi</creatorcontrib><creatorcontrib>IWAMOTO, Masaharu</creatorcontrib><collection>CrossRef</collection><jtitle>TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS Series A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MINAMI, Aki</au><au>ARAKI, Shigetoshi</au><au>IWAMOTO, Masaharu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extension of Mori-Tanaka Theorem to Crack Problem: 5th Report, Macroscopic Elastic Moduli of the Material Containing Mutual Perpendicular Penny-Shaped Cracks</atitle><jtitle>TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS Series A</jtitle><addtitle>JSMET</addtitle><date>2005-10-25</date><risdate>2005</risdate><volume>71</volume><issue>710</issue><spage>1390</spage><epage>1398</epage><pages>1390-1398</pages><issn>0387-5008</issn><eissn>1884-8338</eissn><abstract>A partial differential equation is derived for the macroscopic total strains of a material containing mutual perpendicular penny-shaped cracks with respect to the crack densities of the cracks by using the incremental form of the Mori-Tanaka theorem. By solving the partial differential equation, the macroscopic total strain, the average interaction stress and hence the macroscopic elastic moduli are formulated as a function of the crack densities of the cracks. On the contrary to the results obtained by the ordinary Mori-Tanaka theorem, the resultant macroscopic elastic muduli asymptotically tend to zero as the crack densities of the cracks increase. The present results are in good agreement with the numerical results by means of the differential scheme when the magnitudes of the crack densities of the mutual perpendicular penny-shaped cracks are equal to each other. The volume fraction of the randomly oriented penny-shaped cracks in physical meaning is obtained by comparing the resultant interaction stress with that derived from the Mori-Tanaka theorem.</abstract><pub>The Japan Society of Mechanical Engineers</pub><doi>10.1299/kikaia.71.1390</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0387-5008 |
ispartof | Transactions of the Japan Society of Mechanical Engineers Series A, 2005/10/25, Vol.71(710), pp.1390-1398 |
issn | 0387-5008 1884-8338 |
language | eng ; jpn |
recordid | cdi_crossref_primary_10_1299_kikaia_71_1390 |
source | J-STAGE Free; EZB-FREE-00999 freely available EZB journals |
subjects | Differential Scheme Elastic Moduli Macroscopic Total Strain Micromechanics Mori-Tanaka Theorem Mutual Perpendicular Penny-shaped Cracks |
title | Extension of Mori-Tanaka Theorem to Crack Problem: 5th Report, Macroscopic Elastic Moduli of the Material Containing Mutual Perpendicular Penny-Shaped Cracks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A51%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extension%20of%20Mori-Tanaka%20Theorem%20to%20Crack%20Problem:%205th%20Report,%20Macroscopic%20Elastic%20Moduli%20of%20the%20Material%20Containing%20Mutual%20Perpendicular%20Penny-Shaped%20Cracks&rft.jtitle=TRANSACTIONS%20OF%20THE%20JAPAN%20SOCIETY%20OF%20MECHANICAL%20ENGINEERS%20Series%20A&rft.au=MINAMI,%20Aki&rft.date=2005-10-25&rft.volume=71&rft.issue=710&rft.spage=1390&rft.epage=1398&rft.pages=1390-1398&rft.issn=0387-5008&rft.eissn=1884-8338&rft_id=info:doi/10.1299/kikaia.71.1390&rft_dat=%3Cjstage_cross%3Earticle_kikaia1979_71_710_71_710_1390_article_char_en%3C/jstage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |