Damage Process of Unidirectional SiC Fiber Reinforced Glass-Matrix Cross-ply Laminates

The damage process of fiber reinforced glass composites were studied under tensile loading. The tensile damage initiation and growth in BN-coated HI-NICALON SiC fiber reinforced glass matrix cross-ply laminates were experimentally clarified by replica observations, An improved shear-lag model with t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS Series A 1999/03/25, Vol.65(631), pp.621-627
Hauptverfasser: OKABE, Tomonaga, TAKEDA, Nobuo, IMAI, Katuhiro, KOMOTORI, Jun, SHIMIZU, Masao, IMAI, Yoshikazu
Format: Artikel
Sprache:eng ; jpn
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The damage process of fiber reinforced glass composites were studied under tensile loading. The tensile damage initiation and growth in BN-coated HI-NICALON SiC fiber reinforced glass matrix cross-ply laminates were experimentally clarified by replica observations, An improved shear-lag model with two major cracks, which penetrate both 0 degree and 90 degree plies, were used to predict the stress-strain behavior and reasonably well predicted the stress-strain curve until matrix cracks in the 0 degree ply saturate. Ultimate tensile strength (UTS) could be predicted by using a probabilistic fracture model based on the strength distribution data of fibers extracted from fabricated composites. Difference between the experimental strength and the predicted one was attributed to a difference in the strength distribution data of fibers and the one of fibers in the real composites. Then, UTS was compared with the prediction using the modified strength distribution data of fibers.
ISSN:0387-5008
0025-6501
1884-8338
1943-5649
DOI:10.1299/kikaia.65.621