The Vibro-Impact Response of a Nonharmonically Excited System
The nonlinear response of a one-dimensional oscillator with two-sided amplitude constraints or with a single-sided amplitude constraint which is preloaded against a stop and subjected to nonharmonic excitation is investigated. Positive clearance and preload systems are discussed. The amplitude and s...
Gespeichert in:
Veröffentlicht in: | JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing Machine Elements and Manufacturing, 2000/06/15, Vol.43(2), pp.342-349 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 349 |
---|---|
container_issue | 2 |
container_start_page | 342 |
container_title | JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing |
container_volume | 43 |
creator | TSENG, Chyuan-Yow TUNG, Pi-Cheng |
description | The nonlinear response of a one-dimensional oscillator with two-sided amplitude constraints or with a single-sided amplitude constraint which is preloaded against a stop and subjected to nonharmonic excitation is investigated. Positive clearance and preload systems are discussed. The amplitude and stability of the periodic responses are determined and a bifurcation analysis of these motions is carried out. Perioddoubling bifurcations and degenerate impacts occur in our model. Some parametric regions are shown to possess chaotic motions. The stable linear motion can coexist with stable nonlinear motion or transient chaos. It is found that the degenerate impact can cause a sudden change in the response structure not only to a stable motion but also to chaos. |
doi_str_mv | 10.1299/jsmec.43.342 |
format | Article |
fullrecord | <record><control><sourceid>jstage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1299_jsmec_43_342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>article_jsmec1997_43_2_43_2_342_article_char_en</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-df144adcafb67b7696c580d8d82ac199a83633844b88fde174e3674697ee8c663</originalsourceid><addsrcrecordid>eNpFkE9LAzEQxYMoWGpvfoAcPLo12WST7MGDlKqFoqBVvIVsdmK37D-SPdhvb9qVepkZmN883huErimZ0zTP73ahATvnbM54eoYmlHGZZEx9nR9nnkiRsUs0C6EqCEm54kKKCbrfbAF_VoXvklXTGzvgNwh91wbAncMGv3Tt1vimaytr6nqPlz-2GqDE7_swQHOFLpypA8z--hR9PC43i-dk_fq0WjysE5tRMiSlo5yb0hpXCFlIkQubKVKqUqXG0jw3ignGFOeFUq4EKjkwIbnIJYCyQrApuh11re9C8OB076vG-L2mRB_S62N6zZmO6SN-M-K9CdG286a1Vfi_4ZTlREZsOWK7MJhvOO2NHypbw6gZ7cmDbjqWKH_a2_gZDS37BR04cxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Vibro-Impact Response of a Nonharmonically Excited System</title><source>J-STAGE Free</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>TSENG, Chyuan-Yow ; TUNG, Pi-Cheng</creator><creatorcontrib>TSENG, Chyuan-Yow ; TUNG, Pi-Cheng</creatorcontrib><description>The nonlinear response of a one-dimensional oscillator with two-sided amplitude constraints or with a single-sided amplitude constraint which is preloaded against a stop and subjected to nonharmonic excitation is investigated. Positive clearance and preload systems are discussed. The amplitude and stability of the periodic responses are determined and a bifurcation analysis of these motions is carried out. Perioddoubling bifurcations and degenerate impacts occur in our model. Some parametric regions are shown to possess chaotic motions. The stable linear motion can coexist with stable nonlinear motion or transient chaos. It is found that the degenerate impact can cause a sudden change in the response structure not only to a stable motion but also to chaos.</description><identifier>ISSN: 1344-7653</identifier><identifier>EISSN: 1347-538X</identifier><identifier>DOI: 10.1299/jsmec.43.342</identifier><language>eng</language><publisher>Tokyo: The Japan Society of Mechanical Engineers</publisher><subject>Bifurcation ; Chaos ; Exact sciences and technology ; Nonlinear dynamics and nonlinear dynamical systems ; Physics ; Poincare Map ; Smale Horseshoes ; Statistical physics, thermodynamics, and nonlinear dynamical systems</subject><ispartof>JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, 2000/06/15, Vol.43(2), pp.342-349</ispartof><rights>The Japan Society of Mechanical Engineers</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-df144adcafb67b7696c580d8d82ac199a83633844b88fde174e3674697ee8c663</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1877,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1413907$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>TSENG, Chyuan-Yow</creatorcontrib><creatorcontrib>TUNG, Pi-Cheng</creatorcontrib><title>The Vibro-Impact Response of a Nonharmonically Excited System</title><title>JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing</title><description>The nonlinear response of a one-dimensional oscillator with two-sided amplitude constraints or with a single-sided amplitude constraint which is preloaded against a stop and subjected to nonharmonic excitation is investigated. Positive clearance and preload systems are discussed. The amplitude and stability of the periodic responses are determined and a bifurcation analysis of these motions is carried out. Perioddoubling bifurcations and degenerate impacts occur in our model. Some parametric regions are shown to possess chaotic motions. The stable linear motion can coexist with stable nonlinear motion or transient chaos. It is found that the degenerate impact can cause a sudden change in the response structure not only to a stable motion but also to chaos.</description><subject>Bifurcation</subject><subject>Chaos</subject><subject>Exact sciences and technology</subject><subject>Nonlinear dynamics and nonlinear dynamical systems</subject><subject>Physics</subject><subject>Poincare Map</subject><subject>Smale Horseshoes</subject><subject>Statistical physics, thermodynamics, and nonlinear dynamical systems</subject><issn>1344-7653</issn><issn>1347-538X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNpFkE9LAzEQxYMoWGpvfoAcPLo12WST7MGDlKqFoqBVvIVsdmK37D-SPdhvb9qVepkZmN883huErimZ0zTP73ahATvnbM54eoYmlHGZZEx9nR9nnkiRsUs0C6EqCEm54kKKCbrfbAF_VoXvklXTGzvgNwh91wbAncMGv3Tt1vimaytr6nqPlz-2GqDE7_swQHOFLpypA8z--hR9PC43i-dk_fq0WjysE5tRMiSlo5yb0hpXCFlIkQubKVKqUqXG0jw3ignGFOeFUq4EKjkwIbnIJYCyQrApuh11re9C8OB076vG-L2mRB_S62N6zZmO6SN-M-K9CdG286a1Vfi_4ZTlREZsOWK7MJhvOO2NHypbw6gZ7cmDbjqWKH_a2_gZDS37BR04cxQ</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>TSENG, Chyuan-Yow</creator><creator>TUNG, Pi-Cheng</creator><general>The Japan Society of Mechanical Engineers</general><general>Japan Society of Mechanical Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2000</creationdate><title>The Vibro-Impact Response of a Nonharmonically Excited System</title><author>TSENG, Chyuan-Yow ; TUNG, Pi-Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-df144adcafb67b7696c580d8d82ac199a83633844b88fde174e3674697ee8c663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Bifurcation</topic><topic>Chaos</topic><topic>Exact sciences and technology</topic><topic>Nonlinear dynamics and nonlinear dynamical systems</topic><topic>Physics</topic><topic>Poincare Map</topic><topic>Smale Horseshoes</topic><topic>Statistical physics, thermodynamics, and nonlinear dynamical systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>TSENG, Chyuan-Yow</creatorcontrib><creatorcontrib>TUNG, Pi-Cheng</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TSENG, Chyuan-Yow</au><au>TUNG, Pi-Cheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Vibro-Impact Response of a Nonharmonically Excited System</atitle><jtitle>JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing</jtitle><date>2000</date><risdate>2000</risdate><volume>43</volume><issue>2</issue><spage>342</spage><epage>349</epage><pages>342-349</pages><issn>1344-7653</issn><eissn>1347-538X</eissn><abstract>The nonlinear response of a one-dimensional oscillator with two-sided amplitude constraints or with a single-sided amplitude constraint which is preloaded against a stop and subjected to nonharmonic excitation is investigated. Positive clearance and preload systems are discussed. The amplitude and stability of the periodic responses are determined and a bifurcation analysis of these motions is carried out. Perioddoubling bifurcations and degenerate impacts occur in our model. Some parametric regions are shown to possess chaotic motions. The stable linear motion can coexist with stable nonlinear motion or transient chaos. It is found that the degenerate impact can cause a sudden change in the response structure not only to a stable motion but also to chaos.</abstract><cop>Tokyo</cop><pub>The Japan Society of Mechanical Engineers</pub><doi>10.1299/jsmec.43.342</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1344-7653 |
ispartof | JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, 2000/06/15, Vol.43(2), pp.342-349 |
issn | 1344-7653 1347-538X |
language | eng |
recordid | cdi_crossref_primary_10_1299_jsmec_43_342 |
source | J-STAGE Free; EZB-FREE-00999 freely available EZB journals |
subjects | Bifurcation Chaos Exact sciences and technology Nonlinear dynamics and nonlinear dynamical systems Physics Poincare Map Smale Horseshoes Statistical physics, thermodynamics, and nonlinear dynamical systems |
title | The Vibro-Impact Response of a Nonharmonically Excited System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A54%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Vibro-Impact%20Response%20of%20a%20Nonharmonically%20Excited%20System&rft.jtitle=JSME%20International%20Journal%20Series%20C%20Mechanical%20Systems,%20Machine%20Elements%20and%20Manufacturing&rft.au=TSENG,%20Chyuan-Yow&rft.date=2000&rft.volume=43&rft.issue=2&rft.spage=342&rft.epage=349&rft.pages=342-349&rft.issn=1344-7653&rft.eissn=1347-538X&rft_id=info:doi/10.1299/jsmec.43.342&rft_dat=%3Cjstage_cross%3Earticle_jsmec1997_43_2_43_2_342_article_char_en%3C/jstage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |