The Vibro-Impact Response of a Nonharmonically Excited System

The nonlinear response of a one-dimensional oscillator with two-sided amplitude constraints or with a single-sided amplitude constraint which is preloaded against a stop and subjected to nonharmonic excitation is investigated. Positive clearance and preload systems are discussed. The amplitude and s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing Machine Elements and Manufacturing, 2000/06/15, Vol.43(2), pp.342-349
Hauptverfasser: TSENG, Chyuan-Yow, TUNG, Pi-Cheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 349
container_issue 2
container_start_page 342
container_title JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing
container_volume 43
creator TSENG, Chyuan-Yow
TUNG, Pi-Cheng
description The nonlinear response of a one-dimensional oscillator with two-sided amplitude constraints or with a single-sided amplitude constraint which is preloaded against a stop and subjected to nonharmonic excitation is investigated. Positive clearance and preload systems are discussed. The amplitude and stability of the periodic responses are determined and a bifurcation analysis of these motions is carried out. Perioddoubling bifurcations and degenerate impacts occur in our model. Some parametric regions are shown to possess chaotic motions. The stable linear motion can coexist with stable nonlinear motion or transient chaos. It is found that the degenerate impact can cause a sudden change in the response structure not only to a stable motion but also to chaos.
doi_str_mv 10.1299/jsmec.43.342
format Article
fullrecord <record><control><sourceid>jstage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1299_jsmec_43_342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>article_jsmec1997_43_2_43_2_342_article_char_en</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-df144adcafb67b7696c580d8d82ac199a83633844b88fde174e3674697ee8c663</originalsourceid><addsrcrecordid>eNpFkE9LAzEQxYMoWGpvfoAcPLo12WST7MGDlKqFoqBVvIVsdmK37D-SPdhvb9qVepkZmN883huErimZ0zTP73ahATvnbM54eoYmlHGZZEx9nR9nnkiRsUs0C6EqCEm54kKKCbrfbAF_VoXvklXTGzvgNwh91wbAncMGv3Tt1vimaytr6nqPlz-2GqDE7_swQHOFLpypA8z--hR9PC43i-dk_fq0WjysE5tRMiSlo5yb0hpXCFlIkQubKVKqUqXG0jw3ignGFOeFUq4EKjkwIbnIJYCyQrApuh11re9C8OB076vG-L2mRB_S62N6zZmO6SN-M-K9CdG286a1Vfi_4ZTlREZsOWK7MJhvOO2NHypbw6gZ7cmDbjqWKH_a2_gZDS37BR04cxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Vibro-Impact Response of a Nonharmonically Excited System</title><source>J-STAGE Free</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>TSENG, Chyuan-Yow ; TUNG, Pi-Cheng</creator><creatorcontrib>TSENG, Chyuan-Yow ; TUNG, Pi-Cheng</creatorcontrib><description>The nonlinear response of a one-dimensional oscillator with two-sided amplitude constraints or with a single-sided amplitude constraint which is preloaded against a stop and subjected to nonharmonic excitation is investigated. Positive clearance and preload systems are discussed. The amplitude and stability of the periodic responses are determined and a bifurcation analysis of these motions is carried out. Perioddoubling bifurcations and degenerate impacts occur in our model. Some parametric regions are shown to possess chaotic motions. The stable linear motion can coexist with stable nonlinear motion or transient chaos. It is found that the degenerate impact can cause a sudden change in the response structure not only to a stable motion but also to chaos.</description><identifier>ISSN: 1344-7653</identifier><identifier>EISSN: 1347-538X</identifier><identifier>DOI: 10.1299/jsmec.43.342</identifier><language>eng</language><publisher>Tokyo: The Japan Society of Mechanical Engineers</publisher><subject>Bifurcation ; Chaos ; Exact sciences and technology ; Nonlinear dynamics and nonlinear dynamical systems ; Physics ; Poincare Map ; Smale Horseshoes ; Statistical physics, thermodynamics, and nonlinear dynamical systems</subject><ispartof>JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, 2000/06/15, Vol.43(2), pp.342-349</ispartof><rights>The Japan Society of Mechanical Engineers</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-df144adcafb67b7696c580d8d82ac199a83633844b88fde174e3674697ee8c663</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1877,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1413907$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>TSENG, Chyuan-Yow</creatorcontrib><creatorcontrib>TUNG, Pi-Cheng</creatorcontrib><title>The Vibro-Impact Response of a Nonharmonically Excited System</title><title>JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing</title><description>The nonlinear response of a one-dimensional oscillator with two-sided amplitude constraints or with a single-sided amplitude constraint which is preloaded against a stop and subjected to nonharmonic excitation is investigated. Positive clearance and preload systems are discussed. The amplitude and stability of the periodic responses are determined and a bifurcation analysis of these motions is carried out. Perioddoubling bifurcations and degenerate impacts occur in our model. Some parametric regions are shown to possess chaotic motions. The stable linear motion can coexist with stable nonlinear motion or transient chaos. It is found that the degenerate impact can cause a sudden change in the response structure not only to a stable motion but also to chaos.</description><subject>Bifurcation</subject><subject>Chaos</subject><subject>Exact sciences and technology</subject><subject>Nonlinear dynamics and nonlinear dynamical systems</subject><subject>Physics</subject><subject>Poincare Map</subject><subject>Smale Horseshoes</subject><subject>Statistical physics, thermodynamics, and nonlinear dynamical systems</subject><issn>1344-7653</issn><issn>1347-538X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNpFkE9LAzEQxYMoWGpvfoAcPLo12WST7MGDlKqFoqBVvIVsdmK37D-SPdhvb9qVepkZmN883huErimZ0zTP73ahATvnbM54eoYmlHGZZEx9nR9nnkiRsUs0C6EqCEm54kKKCbrfbAF_VoXvklXTGzvgNwh91wbAncMGv3Tt1vimaytr6nqPlz-2GqDE7_swQHOFLpypA8z--hR9PC43i-dk_fq0WjysE5tRMiSlo5yb0hpXCFlIkQubKVKqUqXG0jw3ignGFOeFUq4EKjkwIbnIJYCyQrApuh11re9C8OB076vG-L2mRB_S62N6zZmO6SN-M-K9CdG286a1Vfi_4ZTlREZsOWK7MJhvOO2NHypbw6gZ7cmDbjqWKH_a2_gZDS37BR04cxQ</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>TSENG, Chyuan-Yow</creator><creator>TUNG, Pi-Cheng</creator><general>The Japan Society of Mechanical Engineers</general><general>Japan Society of Mechanical Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2000</creationdate><title>The Vibro-Impact Response of a Nonharmonically Excited System</title><author>TSENG, Chyuan-Yow ; TUNG, Pi-Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-df144adcafb67b7696c580d8d82ac199a83633844b88fde174e3674697ee8c663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Bifurcation</topic><topic>Chaos</topic><topic>Exact sciences and technology</topic><topic>Nonlinear dynamics and nonlinear dynamical systems</topic><topic>Physics</topic><topic>Poincare Map</topic><topic>Smale Horseshoes</topic><topic>Statistical physics, thermodynamics, and nonlinear dynamical systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>TSENG, Chyuan-Yow</creatorcontrib><creatorcontrib>TUNG, Pi-Cheng</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TSENG, Chyuan-Yow</au><au>TUNG, Pi-Cheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Vibro-Impact Response of a Nonharmonically Excited System</atitle><jtitle>JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing</jtitle><date>2000</date><risdate>2000</risdate><volume>43</volume><issue>2</issue><spage>342</spage><epage>349</epage><pages>342-349</pages><issn>1344-7653</issn><eissn>1347-538X</eissn><abstract>The nonlinear response of a one-dimensional oscillator with two-sided amplitude constraints or with a single-sided amplitude constraint which is preloaded against a stop and subjected to nonharmonic excitation is investigated. Positive clearance and preload systems are discussed. The amplitude and stability of the periodic responses are determined and a bifurcation analysis of these motions is carried out. Perioddoubling bifurcations and degenerate impacts occur in our model. Some parametric regions are shown to possess chaotic motions. The stable linear motion can coexist with stable nonlinear motion or transient chaos. It is found that the degenerate impact can cause a sudden change in the response structure not only to a stable motion but also to chaos.</abstract><cop>Tokyo</cop><pub>The Japan Society of Mechanical Engineers</pub><doi>10.1299/jsmec.43.342</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1344-7653
ispartof JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, 2000/06/15, Vol.43(2), pp.342-349
issn 1344-7653
1347-538X
language eng
recordid cdi_crossref_primary_10_1299_jsmec_43_342
source J-STAGE Free; EZB-FREE-00999 freely available EZB journals
subjects Bifurcation
Chaos
Exact sciences and technology
Nonlinear dynamics and nonlinear dynamical systems
Physics
Poincare Map
Smale Horseshoes
Statistical physics, thermodynamics, and nonlinear dynamical systems
title The Vibro-Impact Response of a Nonharmonically Excited System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A54%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Vibro-Impact%20Response%20of%20a%20Nonharmonically%20Excited%20System&rft.jtitle=JSME%20International%20Journal%20Series%20C%20Mechanical%20Systems,%20Machine%20Elements%20and%20Manufacturing&rft.au=TSENG,%20Chyuan-Yow&rft.date=2000&rft.volume=43&rft.issue=2&rft.spage=342&rft.epage=349&rft.pages=342-349&rft.issn=1344-7653&rft.eissn=1347-538X&rft_id=info:doi/10.1299/jsmec.43.342&rft_dat=%3Cjstage_cross%3Earticle_jsmec1997_43_2_43_2_342_article_char_en%3C/jstage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true