Analysis of In-Plane Problems for an Isotropic Elastic Medium with Two Circular Inclusions
In the present paper, we derive a solution for two circular elastic inclusions that are perfectly bonded to an elastic medium (matrix) of infinite extent under in-plane deformation. These two inclusions have different radii, central points, and elasticities. The matrix is subjected to arbitrary load...
Gespeichert in:
Veröffentlicht in: | Journal of Solid Mechanics and Materials Engineering 2012, Vol.6(12), pp.1072-1087 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1087 |
---|---|
container_issue | 12 |
container_start_page | 1072 |
container_title | Journal of Solid Mechanics and Materials Engineering |
container_volume | 6 |
creator | MIYAGAWA, Mutsumi TAMIYA, Takanobu SHIMURA, Jyo SUZUKI, Takuo |
description | In the present paper, we derive a solution for two circular elastic inclusions that are perfectly bonded to an elastic medium (matrix) of infinite extent under in-plane deformation. These two inclusions have different radii, central points, and elasticities. The matrix is subjected to arbitrary loading by, for example, uniform stresses, as well as to a concentrated force at an arbitrary point. In this paper, we present a solution under uniform stresses at infinity as an example. The solution is obtained through iterations of the Mö bius transformation as a series with an explicit general term involving the complex potential of the corresponding homogeneous problem. This procedure is referred to as heterogenization. Using these solutions, several numerical examples are presented graphically. |
doi_str_mv | 10.1299/jmmp.6.1072 |
format | Article |
fullrecord | <record><control><sourceid>jstage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1299_jmmp_6_1072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>article_jmmp_6_12_6_1072_article_char_en</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2362-6a96e317aeea1e4015f310308b13677dd1d154722ce43157ef7b24422b1cac393</originalsourceid><addsrcrecordid>eNpNkMFKAzEQhoMoWKsnXyB32ZpJdpPNRSilaqFiD_XiJWSzWZuS3ZRkS_Ht3dJSPP0D880P8yH0CGQCVMrnbdvuJnwCRNArNIKyJJksBVz_m2_RXUpbQrgkshih72mn_W9yCYcGL7ps5XVn8SqGyts24SZErDu8SKGPYecMnnud-iE_bO32LT64foPXh4BnLpq913HoMH6fXOjSPbpptE_24Zxj9PU6X8_es-Xn22I2XWaGMk4zriW3DIS2VoPNCRQNA8JIWQHjQtQ11FDkglJjcwaFsI2oaJ5TWoHRhkk2Rk-nXhNDStE2ahddq-OvAqKOWtRRi-LqqGWgX070NvX6x15YHYe3vL2w9HxwWZiNjsp27A-65WzJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Analysis of In-Plane Problems for an Isotropic Elastic Medium with Two Circular Inclusions</title><source>J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>MIYAGAWA, Mutsumi ; TAMIYA, Takanobu ; SHIMURA, Jyo ; SUZUKI, Takuo</creator><creatorcontrib>MIYAGAWA, Mutsumi ; TAMIYA, Takanobu ; SHIMURA, Jyo ; SUZUKI, Takuo</creatorcontrib><description>In the present paper, we derive a solution for two circular elastic inclusions that are perfectly bonded to an elastic medium (matrix) of infinite extent under in-plane deformation. These two inclusions have different radii, central points, and elasticities. The matrix is subjected to arbitrary loading by, for example, uniform stresses, as well as to a concentrated force at an arbitrary point. In this paper, we present a solution under uniform stresses at infinity as an example. The solution is obtained through iterations of the Mö bius transformation as a series with an explicit general term involving the complex potential of the corresponding homogeneous problem. This procedure is referred to as heterogenization. Using these solutions, several numerical examples are presented graphically.</description><identifier>ISSN: 1880-9871</identifier><identifier>EISSN: 1880-9871</identifier><identifier>DOI: 10.1299/jmmp.6.1072</identifier><language>eng</language><publisher>The Japan Society of Mechanical Engineers</publisher><subject>In-Plane Problem ; Isotropic Elasticity ; Two Circular Elastic Inclusions ; Uniform Stress</subject><ispartof>Journal of Solid Mechanics and Materials Engineering, 2012, Vol.6(12), pp.1072-1087</ispartof><rights>2012 by The Japan Society of Mechanical Engineers</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2362-6a96e317aeea1e4015f310308b13677dd1d154722ce43157ef7b24422b1cac393</citedby><cites>FETCH-LOGICAL-c2362-6a96e317aeea1e4015f310308b13677dd1d154722ce43157ef7b24422b1cac393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,1884,4025,27928,27929,27930</link.rule.ids></links><search><creatorcontrib>MIYAGAWA, Mutsumi</creatorcontrib><creatorcontrib>TAMIYA, Takanobu</creatorcontrib><creatorcontrib>SHIMURA, Jyo</creatorcontrib><creatorcontrib>SUZUKI, Takuo</creatorcontrib><title>Analysis of In-Plane Problems for an Isotropic Elastic Medium with Two Circular Inclusions</title><title>Journal of Solid Mechanics and Materials Engineering</title><addtitle>JSMME</addtitle><description>In the present paper, we derive a solution for two circular elastic inclusions that are perfectly bonded to an elastic medium (matrix) of infinite extent under in-plane deformation. These two inclusions have different radii, central points, and elasticities. The matrix is subjected to arbitrary loading by, for example, uniform stresses, as well as to a concentrated force at an arbitrary point. In this paper, we present a solution under uniform stresses at infinity as an example. The solution is obtained through iterations of the Mö bius transformation as a series with an explicit general term involving the complex potential of the corresponding homogeneous problem. This procedure is referred to as heterogenization. Using these solutions, several numerical examples are presented graphically.</description><subject>In-Plane Problem</subject><subject>Isotropic Elasticity</subject><subject>Two Circular Elastic Inclusions</subject><subject>Uniform Stress</subject><issn>1880-9871</issn><issn>1880-9871</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpNkMFKAzEQhoMoWKsnXyB32ZpJdpPNRSilaqFiD_XiJWSzWZuS3ZRkS_Ht3dJSPP0D880P8yH0CGQCVMrnbdvuJnwCRNArNIKyJJksBVz_m2_RXUpbQrgkshih72mn_W9yCYcGL7ps5XVn8SqGyts24SZErDu8SKGPYecMnnud-iE_bO32LT64foPXh4BnLpq913HoMH6fXOjSPbpptE_24Zxj9PU6X8_es-Xn22I2XWaGMk4zriW3DIS2VoPNCRQNA8JIWQHjQtQ11FDkglJjcwaFsI2oaJ5TWoHRhkk2Rk-nXhNDStE2ahddq-OvAqKOWtRRi-LqqGWgX070NvX6x15YHYe3vL2w9HxwWZiNjsp27A-65WzJ</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>MIYAGAWA, Mutsumi</creator><creator>TAMIYA, Takanobu</creator><creator>SHIMURA, Jyo</creator><creator>SUZUKI, Takuo</creator><general>The Japan Society of Mechanical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2012</creationdate><title>Analysis of In-Plane Problems for an Isotropic Elastic Medium with Two Circular Inclusions</title><author>MIYAGAWA, Mutsumi ; TAMIYA, Takanobu ; SHIMURA, Jyo ; SUZUKI, Takuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2362-6a96e317aeea1e4015f310308b13677dd1d154722ce43157ef7b24422b1cac393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>In-Plane Problem</topic><topic>Isotropic Elasticity</topic><topic>Two Circular Elastic Inclusions</topic><topic>Uniform Stress</topic><toplevel>online_resources</toplevel><creatorcontrib>MIYAGAWA, Mutsumi</creatorcontrib><creatorcontrib>TAMIYA, Takanobu</creatorcontrib><creatorcontrib>SHIMURA, Jyo</creatorcontrib><creatorcontrib>SUZUKI, Takuo</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of Solid Mechanics and Materials Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MIYAGAWA, Mutsumi</au><au>TAMIYA, Takanobu</au><au>SHIMURA, Jyo</au><au>SUZUKI, Takuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of In-Plane Problems for an Isotropic Elastic Medium with Two Circular Inclusions</atitle><jtitle>Journal of Solid Mechanics and Materials Engineering</jtitle><addtitle>JSMME</addtitle><date>2012</date><risdate>2012</risdate><volume>6</volume><issue>12</issue><spage>1072</spage><epage>1087</epage><pages>1072-1087</pages><issn>1880-9871</issn><eissn>1880-9871</eissn><abstract>In the present paper, we derive a solution for two circular elastic inclusions that are perfectly bonded to an elastic medium (matrix) of infinite extent under in-plane deformation. These two inclusions have different radii, central points, and elasticities. The matrix is subjected to arbitrary loading by, for example, uniform stresses, as well as to a concentrated force at an arbitrary point. In this paper, we present a solution under uniform stresses at infinity as an example. The solution is obtained through iterations of the Mö bius transformation as a series with an explicit general term involving the complex potential of the corresponding homogeneous problem. This procedure is referred to as heterogenization. Using these solutions, several numerical examples are presented graphically.</abstract><pub>The Japan Society of Mechanical Engineers</pub><doi>10.1299/jmmp.6.1072</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1880-9871 |
ispartof | Journal of Solid Mechanics and Materials Engineering, 2012, Vol.6(12), pp.1072-1087 |
issn | 1880-9871 1880-9871 |
language | eng |
recordid | cdi_crossref_primary_10_1299_jmmp_6_1072 |
source | J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese; EZB-FREE-00999 freely available EZB journals |
subjects | In-Plane Problem Isotropic Elasticity Two Circular Elastic Inclusions Uniform Stress |
title | Analysis of In-Plane Problems for an Isotropic Elastic Medium with Two Circular Inclusions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T06%3A29%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20In-Plane%20Problems%20for%20an%20Isotropic%20Elastic%20Medium%20with%20Two%20Circular%20Inclusions&rft.jtitle=Journal%20of%20Solid%20Mechanics%20and%20Materials%20Engineering&rft.au=MIYAGAWA,%20Mutsumi&rft.date=2012&rft.volume=6&rft.issue=12&rft.spage=1072&rft.epage=1087&rft.pages=1072-1087&rft.issn=1880-9871&rft.eissn=1880-9871&rft_id=info:doi/10.1299/jmmp.6.1072&rft_dat=%3Cjstage_cross%3Earticle_jmmp_6_12_6_1072_article_char_en%3C/jstage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |