Analysis of In-Plane Problems for an Isotropic Elastic Medium with Two Circular Inclusions

In the present paper, we derive a solution for two circular elastic inclusions that are perfectly bonded to an elastic medium (matrix) of infinite extent under in-plane deformation. These two inclusions have different radii, central points, and elasticities. The matrix is subjected to arbitrary load...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Solid Mechanics and Materials Engineering 2012, Vol.6(12), pp.1072-1087
Hauptverfasser: MIYAGAWA, Mutsumi, TAMIYA, Takanobu, SHIMURA, Jyo, SUZUKI, Takuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1087
container_issue 12
container_start_page 1072
container_title Journal of Solid Mechanics and Materials Engineering
container_volume 6
creator MIYAGAWA, Mutsumi
TAMIYA, Takanobu
SHIMURA, Jyo
SUZUKI, Takuo
description In the present paper, we derive a solution for two circular elastic inclusions that are perfectly bonded to an elastic medium (matrix) of infinite extent under in-plane deformation. These two inclusions have different radii, central points, and elasticities. The matrix is subjected to arbitrary loading by, for example, uniform stresses, as well as to a concentrated force at an arbitrary point. In this paper, we present a solution under uniform stresses at infinity as an example. The solution is obtained through iterations of the Mö bius transformation as a series with an explicit general term involving the complex potential of the corresponding homogeneous problem. This procedure is referred to as heterogenization. Using these solutions, several numerical examples are presented graphically.
doi_str_mv 10.1299/jmmp.6.1072
format Article
fullrecord <record><control><sourceid>jstage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1299_jmmp_6_1072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>article_jmmp_6_12_6_1072_article_char_en</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2362-6a96e317aeea1e4015f310308b13677dd1d154722ce43157ef7b24422b1cac393</originalsourceid><addsrcrecordid>eNpNkMFKAzEQhoMoWKsnXyB32ZpJdpPNRSilaqFiD_XiJWSzWZuS3ZRkS_Ht3dJSPP0D880P8yH0CGQCVMrnbdvuJnwCRNArNIKyJJksBVz_m2_RXUpbQrgkshih72mn_W9yCYcGL7ps5XVn8SqGyts24SZErDu8SKGPYecMnnud-iE_bO32LT64foPXh4BnLpq913HoMH6fXOjSPbpptE_24Zxj9PU6X8_es-Xn22I2XWaGMk4zriW3DIS2VoPNCRQNA8JIWQHjQtQ11FDkglJjcwaFsI2oaJ5TWoHRhkk2Rk-nXhNDStE2ahddq-OvAqKOWtRRi-LqqGWgX070NvX6x15YHYe3vL2w9HxwWZiNjsp27A-65WzJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Analysis of In-Plane Problems for an Isotropic Elastic Medium with Two Circular Inclusions</title><source>J-STAGE (Japan Science &amp; Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>MIYAGAWA, Mutsumi ; TAMIYA, Takanobu ; SHIMURA, Jyo ; SUZUKI, Takuo</creator><creatorcontrib>MIYAGAWA, Mutsumi ; TAMIYA, Takanobu ; SHIMURA, Jyo ; SUZUKI, Takuo</creatorcontrib><description>In the present paper, we derive a solution for two circular elastic inclusions that are perfectly bonded to an elastic medium (matrix) of infinite extent under in-plane deformation. These two inclusions have different radii, central points, and elasticities. The matrix is subjected to arbitrary loading by, for example, uniform stresses, as well as to a concentrated force at an arbitrary point. In this paper, we present a solution under uniform stresses at infinity as an example. The solution is obtained through iterations of the Mö bius transformation as a series with an explicit general term involving the complex potential of the corresponding homogeneous problem. This procedure is referred to as heterogenization. Using these solutions, several numerical examples are presented graphically.</description><identifier>ISSN: 1880-9871</identifier><identifier>EISSN: 1880-9871</identifier><identifier>DOI: 10.1299/jmmp.6.1072</identifier><language>eng</language><publisher>The Japan Society of Mechanical Engineers</publisher><subject>In-Plane Problem ; Isotropic Elasticity ; Two Circular Elastic Inclusions ; Uniform Stress</subject><ispartof>Journal of Solid Mechanics and Materials Engineering, 2012, Vol.6(12), pp.1072-1087</ispartof><rights>2012 by The Japan Society of Mechanical Engineers</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2362-6a96e317aeea1e4015f310308b13677dd1d154722ce43157ef7b24422b1cac393</citedby><cites>FETCH-LOGICAL-c2362-6a96e317aeea1e4015f310308b13677dd1d154722ce43157ef7b24422b1cac393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,1884,4025,27928,27929,27930</link.rule.ids></links><search><creatorcontrib>MIYAGAWA, Mutsumi</creatorcontrib><creatorcontrib>TAMIYA, Takanobu</creatorcontrib><creatorcontrib>SHIMURA, Jyo</creatorcontrib><creatorcontrib>SUZUKI, Takuo</creatorcontrib><title>Analysis of In-Plane Problems for an Isotropic Elastic Medium with Two Circular Inclusions</title><title>Journal of Solid Mechanics and Materials Engineering</title><addtitle>JSMME</addtitle><description>In the present paper, we derive a solution for two circular elastic inclusions that are perfectly bonded to an elastic medium (matrix) of infinite extent under in-plane deformation. These two inclusions have different radii, central points, and elasticities. The matrix is subjected to arbitrary loading by, for example, uniform stresses, as well as to a concentrated force at an arbitrary point. In this paper, we present a solution under uniform stresses at infinity as an example. The solution is obtained through iterations of the Mö bius transformation as a series with an explicit general term involving the complex potential of the corresponding homogeneous problem. This procedure is referred to as heterogenization. Using these solutions, several numerical examples are presented graphically.</description><subject>In-Plane Problem</subject><subject>Isotropic Elasticity</subject><subject>Two Circular Elastic Inclusions</subject><subject>Uniform Stress</subject><issn>1880-9871</issn><issn>1880-9871</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpNkMFKAzEQhoMoWKsnXyB32ZpJdpPNRSilaqFiD_XiJWSzWZuS3ZRkS_Ht3dJSPP0D880P8yH0CGQCVMrnbdvuJnwCRNArNIKyJJksBVz_m2_RXUpbQrgkshih72mn_W9yCYcGL7ps5XVn8SqGyts24SZErDu8SKGPYecMnnud-iE_bO32LT64foPXh4BnLpq913HoMH6fXOjSPbpptE_24Zxj9PU6X8_es-Xn22I2XWaGMk4zriW3DIS2VoPNCRQNA8JIWQHjQtQ11FDkglJjcwaFsI2oaJ5TWoHRhkk2Rk-nXhNDStE2ahddq-OvAqKOWtRRi-LqqGWgX070NvX6x15YHYe3vL2w9HxwWZiNjsp27A-65WzJ</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>MIYAGAWA, Mutsumi</creator><creator>TAMIYA, Takanobu</creator><creator>SHIMURA, Jyo</creator><creator>SUZUKI, Takuo</creator><general>The Japan Society of Mechanical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2012</creationdate><title>Analysis of In-Plane Problems for an Isotropic Elastic Medium with Two Circular Inclusions</title><author>MIYAGAWA, Mutsumi ; TAMIYA, Takanobu ; SHIMURA, Jyo ; SUZUKI, Takuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2362-6a96e317aeea1e4015f310308b13677dd1d154722ce43157ef7b24422b1cac393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>In-Plane Problem</topic><topic>Isotropic Elasticity</topic><topic>Two Circular Elastic Inclusions</topic><topic>Uniform Stress</topic><toplevel>online_resources</toplevel><creatorcontrib>MIYAGAWA, Mutsumi</creatorcontrib><creatorcontrib>TAMIYA, Takanobu</creatorcontrib><creatorcontrib>SHIMURA, Jyo</creatorcontrib><creatorcontrib>SUZUKI, Takuo</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of Solid Mechanics and Materials Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MIYAGAWA, Mutsumi</au><au>TAMIYA, Takanobu</au><au>SHIMURA, Jyo</au><au>SUZUKI, Takuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of In-Plane Problems for an Isotropic Elastic Medium with Two Circular Inclusions</atitle><jtitle>Journal of Solid Mechanics and Materials Engineering</jtitle><addtitle>JSMME</addtitle><date>2012</date><risdate>2012</risdate><volume>6</volume><issue>12</issue><spage>1072</spage><epage>1087</epage><pages>1072-1087</pages><issn>1880-9871</issn><eissn>1880-9871</eissn><abstract>In the present paper, we derive a solution for two circular elastic inclusions that are perfectly bonded to an elastic medium (matrix) of infinite extent under in-plane deformation. These two inclusions have different radii, central points, and elasticities. The matrix is subjected to arbitrary loading by, for example, uniform stresses, as well as to a concentrated force at an arbitrary point. In this paper, we present a solution under uniform stresses at infinity as an example. The solution is obtained through iterations of the Mö bius transformation as a series with an explicit general term involving the complex potential of the corresponding homogeneous problem. This procedure is referred to as heterogenization. Using these solutions, several numerical examples are presented graphically.</abstract><pub>The Japan Society of Mechanical Engineers</pub><doi>10.1299/jmmp.6.1072</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1880-9871
ispartof Journal of Solid Mechanics and Materials Engineering, 2012, Vol.6(12), pp.1072-1087
issn 1880-9871
1880-9871
language eng
recordid cdi_crossref_primary_10_1299_jmmp_6_1072
source J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese; EZB-FREE-00999 freely available EZB journals
subjects In-Plane Problem
Isotropic Elasticity
Two Circular Elastic Inclusions
Uniform Stress
title Analysis of In-Plane Problems for an Isotropic Elastic Medium with Two Circular Inclusions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T06%3A29%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20In-Plane%20Problems%20for%20an%20Isotropic%20Elastic%20Medium%20with%20Two%20Circular%20Inclusions&rft.jtitle=Journal%20of%20Solid%20Mechanics%20and%20Materials%20Engineering&rft.au=MIYAGAWA,%20Mutsumi&rft.date=2012&rft.volume=6&rft.issue=12&rft.spage=1072&rft.epage=1087&rft.pages=1072-1087&rft.issn=1880-9871&rft.eissn=1880-9871&rft_id=info:doi/10.1299/jmmp.6.1072&rft_dat=%3Cjstage_cross%3Earticle_jmmp_6_12_6_1072_article_char_en%3C/jstage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true