Stochastic Runge Kutta methods with the constant elasticity of variance (CEV) diffusion model for pricing option
In order to solve numerically the constant elasticity of variance (CEV) model for pricing of European call option, we propose in thiswork the Stochastic Runge-Kutta method. We compare the obtained results using this approache, with those given by the Monte Carlo method in Broadie-Kaya [4]. Further,...
Gespeichert in:
Veröffentlicht in: | Int. J. Math. Anal 2014, Vol.8 (18), p.849-856 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 856 |
---|---|
container_issue | 18 |
container_start_page | 849 |
container_title | Int. J. Math. Anal |
container_volume | 8 |
creator | Aboulaich, Rajae Jraifi, Abdelilah Medarhri, Ibtissam |
description | In order to solve numerically the constant elasticity of variance (CEV) model for pricing of European call option, we propose in thiswork the Stochastic Runge-Kutta method. We compare the obtained results using this approache, with those given by the Monte Carlo method in Broadie-Kaya [4]. Further, we demonstrate the faster convergence rate of the error obtained by the proposed method. Finally a comparative numerical study is done using different values of the coefficient of elasticity |
doi_str_mv | 10.12988/ijma.2014.4381 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_crossref_primary_10_12988_ijma_2014_4381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03135016v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1201-80362a8ffbb3d267ca7097fca77b5c4ac7cadc2602d3d0ddcb2a2572c1e363b83</originalsourceid><addsrcrecordid>eNpNkMtrAjEQxkNpoWI99zrHelDz2JdHEVtLhUJf15DNw43sbmQTLf73zWopncsM33wzzPwQuid4Sui8KGZ214gpxSSZJqwgV2hAGEkmeZrPr__Vt2jk_Q7HiEpK6QDt34OTlfDBSng7tFsNL4cQBDQ6VE55-LahglBpkK71QbQBdH1223ACZ-AoOitaqeFhufoag7LGHLx1LTRO6RqM62DfRXe7BbcPsXGHboyovR795iH6fFx9LNeTzevT83KxmUgS35gUmGVUFMaUJVM0y6XI8Tw3MeVlKhMho6IkzTBVTGGlZEkFTXMqiWYZKws2ROPL3krUPJ7QiO7EnbB8vdjwXosIWIpJdiTRO7t4Zee877T5GyCYn_nyni_v-fKeL_sBOxdvoA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stochastic Runge Kutta methods with the constant elasticity of variance (CEV) diffusion model for pricing option</title><source>Free E-Journal (出版社公開部分のみ)</source><creator>Aboulaich, Rajae ; Jraifi, Abdelilah ; Medarhri, Ibtissam</creator><creatorcontrib>Aboulaich, Rajae ; Jraifi, Abdelilah ; Medarhri, Ibtissam</creatorcontrib><description>In order to solve numerically the constant elasticity of variance (CEV) model for pricing of European call option, we propose in thiswork the Stochastic Runge-Kutta method. We compare the obtained results using this approache, with those given by the Monte Carlo method in Broadie-Kaya [4]. Further, we demonstrate the faster convergence rate of the error obtained by the proposed method. Finally a comparative numerical study is done using different values of the coefficient of elasticity</description><identifier>ISSN: 1314-7579</identifier><identifier>EISSN: 1314-7579</identifier><identifier>DOI: 10.12988/ijma.2014.4381</identifier><language>eng</language><subject>Mathematics</subject><ispartof>Int. J. Math. Anal, 2014, Vol.8 (18), p.849-856</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1201-80362a8ffbb3d267ca7097fca77b5c4ac7cadc2602d3d0ddcb2a2572c1e363b83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,881,4009,27902,27903,27904</link.rule.ids><backlink>$$Uhttps://uphf.hal.science/hal-03135016$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Aboulaich, Rajae</creatorcontrib><creatorcontrib>Jraifi, Abdelilah</creatorcontrib><creatorcontrib>Medarhri, Ibtissam</creatorcontrib><title>Stochastic Runge Kutta methods with the constant elasticity of variance (CEV) diffusion model for pricing option</title><title>Int. J. Math. Anal</title><description>In order to solve numerically the constant elasticity of variance (CEV) model for pricing of European call option, we propose in thiswork the Stochastic Runge-Kutta method. We compare the obtained results using this approache, with those given by the Monte Carlo method in Broadie-Kaya [4]. Further, we demonstrate the faster convergence rate of the error obtained by the proposed method. Finally a comparative numerical study is done using different values of the coefficient of elasticity</description><subject>Mathematics</subject><issn>1314-7579</issn><issn>1314-7579</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpNkMtrAjEQxkNpoWI99zrHelDz2JdHEVtLhUJf15DNw43sbmQTLf73zWopncsM33wzzPwQuid4Sui8KGZ214gpxSSZJqwgV2hAGEkmeZrPr__Vt2jk_Q7HiEpK6QDt34OTlfDBSng7tFsNL4cQBDQ6VE55-LahglBpkK71QbQBdH1223ACZ-AoOitaqeFhufoag7LGHLx1LTRO6RqM62DfRXe7BbcPsXGHboyovR795iH6fFx9LNeTzevT83KxmUgS35gUmGVUFMaUJVM0y6XI8Tw3MeVlKhMho6IkzTBVTGGlZEkFTXMqiWYZKws2ROPL3krUPJ7QiO7EnbB8vdjwXosIWIpJdiTRO7t4Zee877T5GyCYn_nyni_v-fKeL_sBOxdvoA</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Aboulaich, Rajae</creator><creator>Jraifi, Abdelilah</creator><creator>Medarhri, Ibtissam</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>2014</creationdate><title>Stochastic Runge Kutta methods with the constant elasticity of variance (CEV) diffusion model for pricing option</title><author>Aboulaich, Rajae ; Jraifi, Abdelilah ; Medarhri, Ibtissam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1201-80362a8ffbb3d267ca7097fca77b5c4ac7cadc2602d3d0ddcb2a2572c1e363b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Mathematics</topic><toplevel>online_resources</toplevel><creatorcontrib>Aboulaich, Rajae</creatorcontrib><creatorcontrib>Jraifi, Abdelilah</creatorcontrib><creatorcontrib>Medarhri, Ibtissam</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Int. J. Math. Anal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aboulaich, Rajae</au><au>Jraifi, Abdelilah</au><au>Medarhri, Ibtissam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic Runge Kutta methods with the constant elasticity of variance (CEV) diffusion model for pricing option</atitle><jtitle>Int. J. Math. Anal</jtitle><date>2014</date><risdate>2014</risdate><volume>8</volume><issue>18</issue><spage>849</spage><epage>856</epage><pages>849-856</pages><issn>1314-7579</issn><eissn>1314-7579</eissn><abstract>In order to solve numerically the constant elasticity of variance (CEV) model for pricing of European call option, we propose in thiswork the Stochastic Runge-Kutta method. We compare the obtained results using this approache, with those given by the Monte Carlo method in Broadie-Kaya [4]. Further, we demonstrate the faster convergence rate of the error obtained by the proposed method. Finally a comparative numerical study is done using different values of the coefficient of elasticity</abstract><doi>10.12988/ijma.2014.4381</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1314-7579 |
ispartof | Int. J. Math. Anal, 2014, Vol.8 (18), p.849-856 |
issn | 1314-7579 1314-7579 |
language | eng |
recordid | cdi_crossref_primary_10_12988_ijma_2014_4381 |
source | Free E-Journal (出版社公開部分のみ) |
subjects | Mathematics |
title | Stochastic Runge Kutta methods with the constant elasticity of variance (CEV) diffusion model for pricing option |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T21%3A15%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20Runge%20Kutta%20methods%20with%20the%20constant%20elasticity%20of%20variance%20(CEV)%20diffusion%20model%20for%20pricing%20option&rft.jtitle=Int.%20J.%20Math.%20Anal&rft.au=Aboulaich,%20Rajae&rft.date=2014&rft.volume=8&rft.issue=18&rft.spage=849&rft.epage=856&rft.pages=849-856&rft.issn=1314-7579&rft.eissn=1314-7579&rft_id=info:doi/10.12988/ijma.2014.4381&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03135016v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |