A Short and General Duality Proof for Wasserstein Distributionally Robust Optimization

Wasserstein distributionally robust optimization has emerged as a recent topic with broader applications in operations research and machine learning. Various proofs have been presented in the literature, each differing in assumptions and levels of generality. In “A Short and General Duality Proof fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Operations research 2024-07
Hauptverfasser: Zhang, Luhao, Yang, Jincheng, Gao, Rui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Operations research
container_volume
creator Zhang, Luhao
Yang, Jincheng
Gao, Rui
description Wasserstein distributionally robust optimization has emerged as a recent topic with broader applications in operations research and machine learning. Various proofs have been presented in the literature, each differing in assumptions and levels of generality. In “A Short and General Duality Proof for Wasserstein Distributionally Robust Optimization,” Zhang, Yang, and Gao present a novel elementary proof that not only shortens existing frameworks but also offers surprising generalizations. Leveraging classical Legendre—Fenchel duality, they demonstrate that strong duality is contingent on a certain interchangeability principle. Moreover, they extend this duality result to encompass risk-averse optimization and globalized distributionally robust counterparts. We present a general duality result for Wasserstein distributionally robust optimization that holds for any Kantorovich transport cost, measurable loss function, and nominal probability distribution. Assuming an interchangeability principle inherent in existing duality results, our proof only uses one-dimensional convex analysis. Furthermore, we demonstrate that the interchangeability principle holds if and only if certain measurable projection and weak measurable selection conditions are satisfied. To illustrate the broader applicability of our approach, we provide a rigorous treatment of duality results in distributionally robust Markov decision processes and distributionally robust multistage stochastic programming. Additionally, we extend our analysis to other problems such as infinity-Wasserstein distributionally robust optimization, risk-averse optimization, and globalized distributionally robust counterpart. Funding: L. Zhang acknowledges the support of Xunyu Zhou and the Nie Center for Intelligent Asset Management at Columbia University. Supplemental Material: The online appendix is available at https://doi.org/10.1287/opre.2023.0135 .
doi_str_mv 10.1287/opre.2023.0135
format Article
fullrecord <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1287_opre_2023_0135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1287_opre_2023_0135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c162t-2f83d8773973ffdcbf1bd7df411e1f38a46c82c3c4523bd1fa4606d8532d9d233</originalsourceid><addsrcrecordid>eNqFkM9LwzAcxYMoWKdXz_kHWpN8m7Q7jk03YTDx962k-YGRthlJdph_vS3z7unB470H74PQLSUFZXV15_fBFIwwKAgFfoYyypnIeSngHGWEAMlBlJ-X6CrGb0LInAueofcFfvnyIWE5aLw2gwmyw6uD7Fw64qfgvcXWB_whYzQhJuMGvHIxBdcekvOD7LojfvbtISa82yfXux85-dfowsoumps_naG3h_vX5Sbf7taPy8U2V1SwlDNbg66rCuYVWKtVa2mrK21LSg21UMtSqJopUCVn0GpqR4MIXXNgeq4ZwAwVp10VfIzB2GYfXC_DsaGkmag0E5VmotJMVMZCfiq4YfzVx__yvx5uZnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Short and General Duality Proof for Wasserstein Distributionally Robust Optimization</title><source>INFORMS PubsOnLine</source><creator>Zhang, Luhao ; Yang, Jincheng ; Gao, Rui</creator><creatorcontrib>Zhang, Luhao ; Yang, Jincheng ; Gao, Rui</creatorcontrib><description>Wasserstein distributionally robust optimization has emerged as a recent topic with broader applications in operations research and machine learning. Various proofs have been presented in the literature, each differing in assumptions and levels of generality. In “A Short and General Duality Proof for Wasserstein Distributionally Robust Optimization,” Zhang, Yang, and Gao present a novel elementary proof that not only shortens existing frameworks but also offers surprising generalizations. Leveraging classical Legendre—Fenchel duality, they demonstrate that strong duality is contingent on a certain interchangeability principle. Moreover, they extend this duality result to encompass risk-averse optimization and globalized distributionally robust counterparts. We present a general duality result for Wasserstein distributionally robust optimization that holds for any Kantorovich transport cost, measurable loss function, and nominal probability distribution. Assuming an interchangeability principle inherent in existing duality results, our proof only uses one-dimensional convex analysis. Furthermore, we demonstrate that the interchangeability principle holds if and only if certain measurable projection and weak measurable selection conditions are satisfied. To illustrate the broader applicability of our approach, we provide a rigorous treatment of duality results in distributionally robust Markov decision processes and distributionally robust multistage stochastic programming. Additionally, we extend our analysis to other problems such as infinity-Wasserstein distributionally robust optimization, risk-averse optimization, and globalized distributionally robust counterpart. Funding: L. Zhang acknowledges the support of Xunyu Zhou and the Nie Center for Intelligent Asset Management at Columbia University. Supplemental Material: The online appendix is available at https://doi.org/10.1287/opre.2023.0135 .</description><identifier>ISSN: 0030-364X</identifier><identifier>EISSN: 1526-5463</identifier><identifier>DOI: 10.1287/opre.2023.0135</identifier><language>eng</language><publisher>INFORMS</publisher><subject>distributionally robust optimization ; duality ; Optimization ; Wasserstein metric</subject><ispartof>Operations research, 2024-07</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c162t-2f83d8773973ffdcbf1bd7df411e1f38a46c82c3c4523bd1fa4606d8532d9d233</cites><orcidid>0000-0001-8568-3581 ; 0000-0002-3581-9425 ; 0000-0003-0145-8577</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3691,27923,27924</link.rule.ids></links><search><creatorcontrib>Zhang, Luhao</creatorcontrib><creatorcontrib>Yang, Jincheng</creatorcontrib><creatorcontrib>Gao, Rui</creatorcontrib><title>A Short and General Duality Proof for Wasserstein Distributionally Robust Optimization</title><title>Operations research</title><description>Wasserstein distributionally robust optimization has emerged as a recent topic with broader applications in operations research and machine learning. Various proofs have been presented in the literature, each differing in assumptions and levels of generality. In “A Short and General Duality Proof for Wasserstein Distributionally Robust Optimization,” Zhang, Yang, and Gao present a novel elementary proof that not only shortens existing frameworks but also offers surprising generalizations. Leveraging classical Legendre—Fenchel duality, they demonstrate that strong duality is contingent on a certain interchangeability principle. Moreover, they extend this duality result to encompass risk-averse optimization and globalized distributionally robust counterparts. We present a general duality result for Wasserstein distributionally robust optimization that holds for any Kantorovich transport cost, measurable loss function, and nominal probability distribution. Assuming an interchangeability principle inherent in existing duality results, our proof only uses one-dimensional convex analysis. Furthermore, we demonstrate that the interchangeability principle holds if and only if certain measurable projection and weak measurable selection conditions are satisfied. To illustrate the broader applicability of our approach, we provide a rigorous treatment of duality results in distributionally robust Markov decision processes and distributionally robust multistage stochastic programming. Additionally, we extend our analysis to other problems such as infinity-Wasserstein distributionally robust optimization, risk-averse optimization, and globalized distributionally robust counterpart. Funding: L. Zhang acknowledges the support of Xunyu Zhou and the Nie Center for Intelligent Asset Management at Columbia University. Supplemental Material: The online appendix is available at https://doi.org/10.1287/opre.2023.0135 .</description><subject>distributionally robust optimization</subject><subject>duality</subject><subject>Optimization</subject><subject>Wasserstein metric</subject><issn>0030-364X</issn><issn>1526-5463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkM9LwzAcxYMoWKdXz_kHWpN8m7Q7jk03YTDx962k-YGRthlJdph_vS3z7unB470H74PQLSUFZXV15_fBFIwwKAgFfoYyypnIeSngHGWEAMlBlJ-X6CrGb0LInAueofcFfvnyIWE5aLw2gwmyw6uD7Fw64qfgvcXWB_whYzQhJuMGvHIxBdcekvOD7LojfvbtISa82yfXux85-dfowsoumps_naG3h_vX5Sbf7taPy8U2V1SwlDNbg66rCuYVWKtVa2mrK21LSg21UMtSqJopUCVn0GpqR4MIXXNgeq4ZwAwVp10VfIzB2GYfXC_DsaGkmag0E5VmotJMVMZCfiq4YfzVx__yvx5uZnQ</recordid><startdate>20240715</startdate><enddate>20240715</enddate><creator>Zhang, Luhao</creator><creator>Yang, Jincheng</creator><creator>Gao, Rui</creator><general>INFORMS</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8568-3581</orcidid><orcidid>https://orcid.org/0000-0002-3581-9425</orcidid><orcidid>https://orcid.org/0000-0003-0145-8577</orcidid></search><sort><creationdate>20240715</creationdate><title>A Short and General Duality Proof for Wasserstein Distributionally Robust Optimization</title><author>Zhang, Luhao ; Yang, Jincheng ; Gao, Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c162t-2f83d8773973ffdcbf1bd7df411e1f38a46c82c3c4523bd1fa4606d8532d9d233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>distributionally robust optimization</topic><topic>duality</topic><topic>Optimization</topic><topic>Wasserstein metric</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Luhao</creatorcontrib><creatorcontrib>Yang, Jincheng</creatorcontrib><creatorcontrib>Gao, Rui</creatorcontrib><collection>CrossRef</collection><jtitle>Operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Luhao</au><au>Yang, Jincheng</au><au>Gao, Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Short and General Duality Proof for Wasserstein Distributionally Robust Optimization</atitle><jtitle>Operations research</jtitle><date>2024-07-15</date><risdate>2024</risdate><issn>0030-364X</issn><eissn>1526-5463</eissn><abstract>Wasserstein distributionally robust optimization has emerged as a recent topic with broader applications in operations research and machine learning. Various proofs have been presented in the literature, each differing in assumptions and levels of generality. In “A Short and General Duality Proof for Wasserstein Distributionally Robust Optimization,” Zhang, Yang, and Gao present a novel elementary proof that not only shortens existing frameworks but also offers surprising generalizations. Leveraging classical Legendre—Fenchel duality, they demonstrate that strong duality is contingent on a certain interchangeability principle. Moreover, they extend this duality result to encompass risk-averse optimization and globalized distributionally robust counterparts. We present a general duality result for Wasserstein distributionally robust optimization that holds for any Kantorovich transport cost, measurable loss function, and nominal probability distribution. Assuming an interchangeability principle inherent in existing duality results, our proof only uses one-dimensional convex analysis. Furthermore, we demonstrate that the interchangeability principle holds if and only if certain measurable projection and weak measurable selection conditions are satisfied. To illustrate the broader applicability of our approach, we provide a rigorous treatment of duality results in distributionally robust Markov decision processes and distributionally robust multistage stochastic programming. Additionally, we extend our analysis to other problems such as infinity-Wasserstein distributionally robust optimization, risk-averse optimization, and globalized distributionally robust counterpart. Funding: L. Zhang acknowledges the support of Xunyu Zhou and the Nie Center for Intelligent Asset Management at Columbia University. Supplemental Material: The online appendix is available at https://doi.org/10.1287/opre.2023.0135 .</abstract><pub>INFORMS</pub><doi>10.1287/opre.2023.0135</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8568-3581</orcidid><orcidid>https://orcid.org/0000-0002-3581-9425</orcidid><orcidid>https://orcid.org/0000-0003-0145-8577</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0030-364X
ispartof Operations research, 2024-07
issn 0030-364X
1526-5463
language eng
recordid cdi_crossref_primary_10_1287_opre_2023_0135
source INFORMS PubsOnLine
subjects distributionally robust optimization
duality
Optimization
Wasserstein metric
title A Short and General Duality Proof for Wasserstein Distributionally Robust Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A56%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Short%20and%20General%20Duality%20Proof%20for%20Wasserstein%20Distributionally%20Robust%20Optimization&rft.jtitle=Operations%20research&rft.au=Zhang,%20Luhao&rft.date=2024-07-15&rft.issn=0030-364X&rft.eissn=1526-5463&rft_id=info:doi/10.1287/opre.2023.0135&rft_dat=%3Ccrossref_infor%3E10_1287_opre_2023_0135%3C/crossref_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true