From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization

We review and develop different tractable approximations to individual chance-constrained problems in robust optimization on a variety of uncertainty sets and show their interesting connections with bounds on the conditional-value-at-risk (CVaR) measure. We extend the idea to joint chance-constraine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Operations research 2010-03, Vol.58 (2), p.470-485
Hauptverfasser: Chen, Wenqing, Sim, Melvyn, Sun, Jie, Teo, Chung-Piaw
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 485
container_issue 2
container_start_page 470
container_title Operations research
container_volume 58
creator Chen, Wenqing
Sim, Melvyn
Sun, Jie
Teo, Chung-Piaw
description We review and develop different tractable approximations to individual chance-constrained problems in robust optimization on a variety of uncertainty sets and show their interesting connections with bounds on the conditional-value-at-risk (CVaR) measure. We extend the idea to joint chance-constrained problems and provide a new formulation that improves upon the standard approach. Our approach builds on a classical worst-case bound for order statistics problems and is applicable even if the constraints are correlated. We provide an application of the model on a network resource allocation problem with uncertain demand.
doi_str_mv 10.1287/opre.1090.0712
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1287_opre_1090_0712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A263460681</galeid><jstor_id>40605930</jstor_id><sourcerecordid>A263460681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-37b0bc06177e299c7e8635ffd31d5e4b0792526eac30f84f8f39c5a32234a0a73</originalsourceid><addsrcrecordid>eNqFkd1rHCEUxaWk0E3a174VJHnNbK86ozN5C0M-CQSy3dI3cV3duOyME3Ufkr8-Tjf0AxaCoHD9neO9HoS-EpgSWovvfghmSqCBKQhCP6AJqSgvqpKzAzQBYFAwXv76hA5jXANAU_FqgmaXwXe4_akecPJ43msTknJ9esYzk87wTTdsnFbJ-T5i1-Nbn-9w-6gyWLS5mEKmzRLfD8l17uU3-Rl9tGoTzZe38wjNLy9-tNfF3f3VTXt-V2gOPBVMLGChgRMhDG0aLUzNWWXtkpFlZcoFiIbmCYzSDGxd2tqyRleKUcpKBUqwI3S88x2Cf9qamOTab0Ofn5SUNESUtRihkx20UhsjXW99bll3Lmp5Tjkrcys1yVSxh1qZ3gS18b2xLpf_46d7-LyWpnN6r-D0H8FiG_OvxbxFt3pMcaW2Me7118HHGIyVQ3CdCs-SgBzTlmPackxbjmlnwbedYB2TD3_oEjhUDYO_A469hi6-5_cKdFuzKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>219174877</pqid></control><display><type>article</type><title>From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization</title><source>Informs</source><source>EBSCOhost Business Source Complete</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Chen, Wenqing ; Sim, Melvyn ; Sun, Jie ; Teo, Chung-Piaw</creator><creatorcontrib>Chen, Wenqing ; Sim, Melvyn ; Sun, Jie ; Teo, Chung-Piaw</creatorcontrib><description>We review and develop different tractable approximations to individual chance-constrained problems in robust optimization on a variety of uncertainty sets and show their interesting connections with bounds on the conditional-value-at-risk (CVaR) measure. We extend the idea to joint chance-constrained problems and provide a new formulation that improves upon the standard approach. Our approach builds on a classical worst-case bound for order statistics problems and is applicable even if the constraints are correlated. We provide an application of the model on a network resource allocation problem with uncertain demand.</description><identifier>ISSN: 0030-364X</identifier><identifier>EISSN: 1526-5463</identifier><identifier>DOI: 10.1287/opre.1090.0712</identifier><identifier>CODEN: OPREAI</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>application ; Approximation ; Decision analysis ; Decision-making ; Investment analysis ; Iterative solutions ; Mathematical functions ; Methods ; nonlinear ; Optimal solutions ; Optimization ; Probabilities ; probability ; programming ; Random variables ; Randomness ; Resource allocation ; risk ; Robust optimization ; stochastic ; Stochastic models ; Studies ; Transshipment ; Uncertainty</subject><ispartof>Operations research, 2010-03, Vol.58 (2), p.470-485</ispartof><rights>2010 INFORMS</rights><rights>COPYRIGHT 2010 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences Mar/Apr 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c606t-37b0bc06177e299c7e8635ffd31d5e4b0792526eac30f84f8f39c5a32234a0a73</citedby><cites>FETCH-LOGICAL-c606t-37b0bc06177e299c7e8635ffd31d5e4b0792526eac30f84f8f39c5a32234a0a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40605930$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/opre.1090.0712$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,780,784,803,3692,27924,27925,58017,58250,62616</link.rule.ids></links><search><creatorcontrib>Chen, Wenqing</creatorcontrib><creatorcontrib>Sim, Melvyn</creatorcontrib><creatorcontrib>Sun, Jie</creatorcontrib><creatorcontrib>Teo, Chung-Piaw</creatorcontrib><title>From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization</title><title>Operations research</title><description>We review and develop different tractable approximations to individual chance-constrained problems in robust optimization on a variety of uncertainty sets and show their interesting connections with bounds on the conditional-value-at-risk (CVaR) measure. We extend the idea to joint chance-constrained problems and provide a new formulation that improves upon the standard approach. Our approach builds on a classical worst-case bound for order statistics problems and is applicable even if the constraints are correlated. We provide an application of the model on a network resource allocation problem with uncertain demand.</description><subject>application</subject><subject>Approximation</subject><subject>Decision analysis</subject><subject>Decision-making</subject><subject>Investment analysis</subject><subject>Iterative solutions</subject><subject>Mathematical functions</subject><subject>Methods</subject><subject>nonlinear</subject><subject>Optimal solutions</subject><subject>Optimization</subject><subject>Probabilities</subject><subject>probability</subject><subject>programming</subject><subject>Random variables</subject><subject>Randomness</subject><subject>Resource allocation</subject><subject>risk</subject><subject>Robust optimization</subject><subject>stochastic</subject><subject>Stochastic models</subject><subject>Studies</subject><subject>Transshipment</subject><subject>Uncertainty</subject><issn>0030-364X</issn><issn>1526-5463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNqFkd1rHCEUxaWk0E3a174VJHnNbK86ozN5C0M-CQSy3dI3cV3duOyME3Ufkr8-Tjf0AxaCoHD9neO9HoS-EpgSWovvfghmSqCBKQhCP6AJqSgvqpKzAzQBYFAwXv76hA5jXANAU_FqgmaXwXe4_akecPJ43msTknJ9esYzk87wTTdsnFbJ-T5i1-Nbn-9w-6gyWLS5mEKmzRLfD8l17uU3-Rl9tGoTzZe38wjNLy9-tNfF3f3VTXt-V2gOPBVMLGChgRMhDG0aLUzNWWXtkpFlZcoFiIbmCYzSDGxd2tqyRleKUcpKBUqwI3S88x2Cf9qamOTab0Ofn5SUNESUtRihkx20UhsjXW99bll3Lmp5Tjkrcys1yVSxh1qZ3gS18b2xLpf_46d7-LyWpnN6r-D0H8FiG_OvxbxFt3pMcaW2Me7118HHGIyVQ3CdCs-SgBzTlmPackxbjmlnwbedYB2TD3_oEjhUDYO_A469hi6-5_cKdFuzKg</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Chen, Wenqing</creator><creator>Sim, Melvyn</creator><creator>Sun, Jie</creator><creator>Teo, Chung-Piaw</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>JQ2</scope><scope>K9.</scope></search><sort><creationdate>20100301</creationdate><title>From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization</title><author>Chen, Wenqing ; Sim, Melvyn ; Sun, Jie ; Teo, Chung-Piaw</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-37b0bc06177e299c7e8635ffd31d5e4b0792526eac30f84f8f39c5a32234a0a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>application</topic><topic>Approximation</topic><topic>Decision analysis</topic><topic>Decision-making</topic><topic>Investment analysis</topic><topic>Iterative solutions</topic><topic>Mathematical functions</topic><topic>Methods</topic><topic>nonlinear</topic><topic>Optimal solutions</topic><topic>Optimization</topic><topic>Probabilities</topic><topic>probability</topic><topic>programming</topic><topic>Random variables</topic><topic>Randomness</topic><topic>Resource allocation</topic><topic>risk</topic><topic>Robust optimization</topic><topic>stochastic</topic><topic>Stochastic models</topic><topic>Studies</topic><topic>Transshipment</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Wenqing</creatorcontrib><creatorcontrib>Sim, Melvyn</creatorcontrib><creatorcontrib>Sun, Jie</creatorcontrib><creatorcontrib>Teo, Chung-Piaw</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Wenqing</au><au>Sim, Melvyn</au><au>Sun, Jie</au><au>Teo, Chung-Piaw</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization</atitle><jtitle>Operations research</jtitle><date>2010-03-01</date><risdate>2010</risdate><volume>58</volume><issue>2</issue><spage>470</spage><epage>485</epage><pages>470-485</pages><issn>0030-364X</issn><eissn>1526-5463</eissn><coden>OPREAI</coden><abstract>We review and develop different tractable approximations to individual chance-constrained problems in robust optimization on a variety of uncertainty sets and show their interesting connections with bounds on the conditional-value-at-risk (CVaR) measure. We extend the idea to joint chance-constrained problems and provide a new formulation that improves upon the standard approach. Our approach builds on a classical worst-case bound for order statistics problems and is applicable even if the constraints are correlated. We provide an application of the model on a network resource allocation problem with uncertain demand.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/opre.1090.0712</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0030-364X
ispartof Operations research, 2010-03, Vol.58 (2), p.470-485
issn 0030-364X
1526-5463
language eng
recordid cdi_crossref_primary_10_1287_opre_1090_0712
source Informs; EBSCOhost Business Source Complete; JSTOR Archive Collection A-Z Listing
subjects application
Approximation
Decision analysis
Decision-making
Investment analysis
Iterative solutions
Mathematical functions
Methods
nonlinear
Optimal solutions
Optimization
Probabilities
probability
programming
Random variables
Randomness
Resource allocation
risk
Robust optimization
stochastic
Stochastic models
Studies
Transshipment
Uncertainty
title From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A23%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20CVaR%20to%20Uncertainty%20Set:%20Implications%20in%20Joint%20Chance-Constrained%20Optimization&rft.jtitle=Operations%20research&rft.au=Chen,%20Wenqing&rft.date=2010-03-01&rft.volume=58&rft.issue=2&rft.spage=470&rft.epage=485&rft.pages=470-485&rft.issn=0030-364X&rft.eissn=1526-5463&rft.coden=OPREAI&rft_id=info:doi/10.1287/opre.1090.0712&rft_dat=%3Cgale_cross%3EA263460681%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=219174877&rft_id=info:pmid/&rft_galeid=A263460681&rft_jstor_id=40605930&rfr_iscdi=true