From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization
We review and develop different tractable approximations to individual chance-constrained problems in robust optimization on a variety of uncertainty sets and show their interesting connections with bounds on the conditional-value-at-risk (CVaR) measure. We extend the idea to joint chance-constraine...
Gespeichert in:
Veröffentlicht in: | Operations research 2010-03, Vol.58 (2), p.470-485 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 485 |
---|---|
container_issue | 2 |
container_start_page | 470 |
container_title | Operations research |
container_volume | 58 |
creator | Chen, Wenqing Sim, Melvyn Sun, Jie Teo, Chung-Piaw |
description | We review and develop different tractable approximations to individual chance-constrained problems in robust optimization on a variety of uncertainty sets and show their interesting connections with bounds on the conditional-value-at-risk (CVaR) measure. We extend the idea to joint chance-constrained problems and provide a new formulation that improves upon the standard approach. Our approach builds on a classical worst-case bound for order statistics problems and is applicable even if the constraints are correlated. We provide an application of the model on a network resource allocation problem with uncertain demand. |
doi_str_mv | 10.1287/opre.1090.0712 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1287_opre_1090_0712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A263460681</galeid><jstor_id>40605930</jstor_id><sourcerecordid>A263460681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-37b0bc06177e299c7e8635ffd31d5e4b0792526eac30f84f8f39c5a32234a0a73</originalsourceid><addsrcrecordid>eNqFkd1rHCEUxaWk0E3a174VJHnNbK86ozN5C0M-CQSy3dI3cV3duOyME3Ufkr8-Tjf0AxaCoHD9neO9HoS-EpgSWovvfghmSqCBKQhCP6AJqSgvqpKzAzQBYFAwXv76hA5jXANAU_FqgmaXwXe4_akecPJ43msTknJ9esYzk87wTTdsnFbJ-T5i1-Nbn-9w-6gyWLS5mEKmzRLfD8l17uU3-Rl9tGoTzZe38wjNLy9-tNfF3f3VTXt-V2gOPBVMLGChgRMhDG0aLUzNWWXtkpFlZcoFiIbmCYzSDGxd2tqyRleKUcpKBUqwI3S88x2Cf9qamOTab0Ofn5SUNESUtRihkx20UhsjXW99bll3Lmp5Tjkrcys1yVSxh1qZ3gS18b2xLpf_46d7-LyWpnN6r-D0H8FiG_OvxbxFt3pMcaW2Me7118HHGIyVQ3CdCs-SgBzTlmPackxbjmlnwbedYB2TD3_oEjhUDYO_A469hi6-5_cKdFuzKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>219174877</pqid></control><display><type>article</type><title>From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization</title><source>Informs</source><source>EBSCOhost Business Source Complete</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Chen, Wenqing ; Sim, Melvyn ; Sun, Jie ; Teo, Chung-Piaw</creator><creatorcontrib>Chen, Wenqing ; Sim, Melvyn ; Sun, Jie ; Teo, Chung-Piaw</creatorcontrib><description>We review and develop different tractable approximations to individual chance-constrained problems in robust optimization on a variety of uncertainty sets and show their interesting connections with bounds on the conditional-value-at-risk (CVaR) measure. We extend the idea to joint chance-constrained problems and provide a new formulation that improves upon the standard approach. Our approach builds on a classical worst-case bound for order statistics problems and is applicable even if the constraints are correlated. We provide an application of the model on a network resource allocation problem with uncertain demand.</description><identifier>ISSN: 0030-364X</identifier><identifier>EISSN: 1526-5463</identifier><identifier>DOI: 10.1287/opre.1090.0712</identifier><identifier>CODEN: OPREAI</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>application ; Approximation ; Decision analysis ; Decision-making ; Investment analysis ; Iterative solutions ; Mathematical functions ; Methods ; nonlinear ; Optimal solutions ; Optimization ; Probabilities ; probability ; programming ; Random variables ; Randomness ; Resource allocation ; risk ; Robust optimization ; stochastic ; Stochastic models ; Studies ; Transshipment ; Uncertainty</subject><ispartof>Operations research, 2010-03, Vol.58 (2), p.470-485</ispartof><rights>2010 INFORMS</rights><rights>COPYRIGHT 2010 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences Mar/Apr 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c606t-37b0bc06177e299c7e8635ffd31d5e4b0792526eac30f84f8f39c5a32234a0a73</citedby><cites>FETCH-LOGICAL-c606t-37b0bc06177e299c7e8635ffd31d5e4b0792526eac30f84f8f39c5a32234a0a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40605930$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/opre.1090.0712$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,780,784,803,3692,27924,27925,58017,58250,62616</link.rule.ids></links><search><creatorcontrib>Chen, Wenqing</creatorcontrib><creatorcontrib>Sim, Melvyn</creatorcontrib><creatorcontrib>Sun, Jie</creatorcontrib><creatorcontrib>Teo, Chung-Piaw</creatorcontrib><title>From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization</title><title>Operations research</title><description>We review and develop different tractable approximations to individual chance-constrained problems in robust optimization on a variety of uncertainty sets and show their interesting connections with bounds on the conditional-value-at-risk (CVaR) measure. We extend the idea to joint chance-constrained problems and provide a new formulation that improves upon the standard approach. Our approach builds on a classical worst-case bound for order statistics problems and is applicable even if the constraints are correlated. We provide an application of the model on a network resource allocation problem with uncertain demand.</description><subject>application</subject><subject>Approximation</subject><subject>Decision analysis</subject><subject>Decision-making</subject><subject>Investment analysis</subject><subject>Iterative solutions</subject><subject>Mathematical functions</subject><subject>Methods</subject><subject>nonlinear</subject><subject>Optimal solutions</subject><subject>Optimization</subject><subject>Probabilities</subject><subject>probability</subject><subject>programming</subject><subject>Random variables</subject><subject>Randomness</subject><subject>Resource allocation</subject><subject>risk</subject><subject>Robust optimization</subject><subject>stochastic</subject><subject>Stochastic models</subject><subject>Studies</subject><subject>Transshipment</subject><subject>Uncertainty</subject><issn>0030-364X</issn><issn>1526-5463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNqFkd1rHCEUxaWk0E3a174VJHnNbK86ozN5C0M-CQSy3dI3cV3duOyME3Ufkr8-Tjf0AxaCoHD9neO9HoS-EpgSWovvfghmSqCBKQhCP6AJqSgvqpKzAzQBYFAwXv76hA5jXANAU_FqgmaXwXe4_akecPJ43msTknJ9esYzk87wTTdsnFbJ-T5i1-Nbn-9w-6gyWLS5mEKmzRLfD8l17uU3-Rl9tGoTzZe38wjNLy9-tNfF3f3VTXt-V2gOPBVMLGChgRMhDG0aLUzNWWXtkpFlZcoFiIbmCYzSDGxd2tqyRleKUcpKBUqwI3S88x2Cf9qamOTab0Ofn5SUNESUtRihkx20UhsjXW99bll3Lmp5Tjkrcys1yVSxh1qZ3gS18b2xLpf_46d7-LyWpnN6r-D0H8FiG_OvxbxFt3pMcaW2Me7118HHGIyVQ3CdCs-SgBzTlmPackxbjmlnwbedYB2TD3_oEjhUDYO_A469hi6-5_cKdFuzKg</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Chen, Wenqing</creator><creator>Sim, Melvyn</creator><creator>Sun, Jie</creator><creator>Teo, Chung-Piaw</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>JQ2</scope><scope>K9.</scope></search><sort><creationdate>20100301</creationdate><title>From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization</title><author>Chen, Wenqing ; Sim, Melvyn ; Sun, Jie ; Teo, Chung-Piaw</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-37b0bc06177e299c7e8635ffd31d5e4b0792526eac30f84f8f39c5a32234a0a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>application</topic><topic>Approximation</topic><topic>Decision analysis</topic><topic>Decision-making</topic><topic>Investment analysis</topic><topic>Iterative solutions</topic><topic>Mathematical functions</topic><topic>Methods</topic><topic>nonlinear</topic><topic>Optimal solutions</topic><topic>Optimization</topic><topic>Probabilities</topic><topic>probability</topic><topic>programming</topic><topic>Random variables</topic><topic>Randomness</topic><topic>Resource allocation</topic><topic>risk</topic><topic>Robust optimization</topic><topic>stochastic</topic><topic>Stochastic models</topic><topic>Studies</topic><topic>Transshipment</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Wenqing</creatorcontrib><creatorcontrib>Sim, Melvyn</creatorcontrib><creatorcontrib>Sun, Jie</creatorcontrib><creatorcontrib>Teo, Chung-Piaw</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Wenqing</au><au>Sim, Melvyn</au><au>Sun, Jie</au><au>Teo, Chung-Piaw</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization</atitle><jtitle>Operations research</jtitle><date>2010-03-01</date><risdate>2010</risdate><volume>58</volume><issue>2</issue><spage>470</spage><epage>485</epage><pages>470-485</pages><issn>0030-364X</issn><eissn>1526-5463</eissn><coden>OPREAI</coden><abstract>We review and develop different tractable approximations to individual chance-constrained problems in robust optimization on a variety of uncertainty sets and show their interesting connections with bounds on the conditional-value-at-risk (CVaR) measure. We extend the idea to joint chance-constrained problems and provide a new formulation that improves upon the standard approach. Our approach builds on a classical worst-case bound for order statistics problems and is applicable even if the constraints are correlated. We provide an application of the model on a network resource allocation problem with uncertain demand.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/opre.1090.0712</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0030-364X |
ispartof | Operations research, 2010-03, Vol.58 (2), p.470-485 |
issn | 0030-364X 1526-5463 |
language | eng |
recordid | cdi_crossref_primary_10_1287_opre_1090_0712 |
source | Informs; EBSCOhost Business Source Complete; JSTOR Archive Collection A-Z Listing |
subjects | application Approximation Decision analysis Decision-making Investment analysis Iterative solutions Mathematical functions Methods nonlinear Optimal solutions Optimization Probabilities probability programming Random variables Randomness Resource allocation risk Robust optimization stochastic Stochastic models Studies Transshipment Uncertainty |
title | From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A23%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20CVaR%20to%20Uncertainty%20Set:%20Implications%20in%20Joint%20Chance-Constrained%20Optimization&rft.jtitle=Operations%20research&rft.au=Chen,%20Wenqing&rft.date=2010-03-01&rft.volume=58&rft.issue=2&rft.spage=470&rft.epage=485&rft.pages=470-485&rft.issn=0030-364X&rft.eissn=1526-5463&rft.coden=OPREAI&rft_id=info:doi/10.1287/opre.1090.0712&rft_dat=%3Cgale_cross%3EA263460681%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=219174877&rft_id=info:pmid/&rft_galeid=A263460681&rft_jstor_id=40605930&rfr_iscdi=true |