A Numerical Method for Solving Singular Stochastic Control Problems

Singular stochastic control has found diverse applications in operations management, economics, and finance. However, in all but the simplest of cases, singular stochastic control problems cannot be solved analytically. In this paper, we propose a method for numerically solving a class of singular s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Operations research 2004-07, Vol.52 (4), p.563-582
Hauptverfasser: Kumar, Sunil, Muthuraman, Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 582
container_issue 4
container_start_page 563
container_title Operations research
container_volume 52
creator Kumar, Sunil
Muthuraman, Kumar
description Singular stochastic control has found diverse applications in operations management, economics, and finance. However, in all but the simplest of cases, singular stochastic control problems cannot be solved analytically. In this paper, we propose a method for numerically solving a class of singular stochastic control problems. We combine finite element methods that numerically solve partial differential equations with a policy update procedure based on the principle of smooth pasting to iteratively solve Hamilton-Jacobi-Bellman equations associated with the stochastic control problem. A key feature of our method is that the presence of singular controls simplifies the procedure. We illustrate the method on two examples of singular stochastic control problems, one drawn from economics and the other from queueing systems.
doi_str_mv 10.1287/opre.1030.0107
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1287_opre_1030_0107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A121078167</galeid><jstor_id>30036608</jstor_id><sourcerecordid>A121078167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-59939d65b81a01adc75516d709eaf21b90a7467bd3db445e995acbacba28ccd83</originalsourceid><addsrcrecordid>eNqFkc1LxDAQxYMouK5evQnFg7euk6ZJm-Oy-AV-wSp4C2ma7mZpmzVpFf97Uyp6ESUhA4_fmxnyEDrGMMNJnp3brdMzDARmgCHbQRNMExbTlJFdNIGgx4SlL_vowPsNAHDK6AQt5tF932hnlKyjO92tbRlV1kVLW7-ZdhUtw9PXMgidVWvpO6OihW07Z-vo0dmi1o0_RHuVrL0--qpT9Hx58bS4jm8frm4W89tYUYAuppwTXjJa5FgClqXKKMWszIBrWSW44CCzlGVFScoiTanmnEpVDDfJlSpzMkWnY9-ts6-99p3Y2N61YaRIMMcpJhwCFI_QStZamLaynZNqpVvtZG1bXZkgz3ESvijHLAv87Bc-nFI3Rv1lUM5673Qlts400n0IDGIIQgxBiCEIMQQRDCejYeM7675pEiJhDPKfjYfhrvH_9zsb-bVZrd-NG7cejAPoBU1EKigj5BMrXqDo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>219141390</pqid></control><display><type>article</type><title>A Numerical Method for Solving Singular Stochastic Control Problems</title><source>Jstor Complete Legacy</source><source>INFORMS PubsOnLine</source><source>EBSCOhost Business Source Complete</source><creator>Kumar, Sunil ; Muthuraman, Kumar</creator><creatorcontrib>Kumar, Sunil ; Muthuraman, Kumar</creatorcontrib><description>Singular stochastic control has found diverse applications in operations management, economics, and finance. However, in all but the simplest of cases, singular stochastic control problems cannot be solved analytically. In this paper, we propose a method for numerically solving a class of singular stochastic control problems. We combine finite element methods that numerically solve partial differential equations with a policy update procedure based on the principle of smooth pasting to iteratively solve Hamilton-Jacobi-Bellman equations associated with the stochastic control problem. A key feature of our method is that the presence of singular controls simplifies the procedure. We illustrate the method on two examples of singular stochastic control problems, one drawn from economics and the other from queueing systems.</description><identifier>ISSN: 0030-364X</identifier><identifier>EISSN: 1526-5463</identifier><identifier>DOI: 10.1287/opre.1030.0107</identifier><identifier>CODEN: OPREAI</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>Analysis ; Approximation ; Boundary conditions ; Brownian approximations ; Brownian motion ; Carrying costs ; Control theory ; Cost control ; diffusions ; Dynamic programming ; dynamic programming/optimal control ; economics ; HJB equations ; investments under uncertainty ; Mathematical procedures ; Mathematical vectors ; Methods ; Network servers ; Numerical methods ; Operations management ; Optimization ; Partial differential equations ; probability ; queueing ; Queuing ; scheduling ; singular stochastic control ; Stochastic models ; Stochastic processes ; Studies ; Technology application ; Terminator regions</subject><ispartof>Operations research, 2004-07, Vol.52 (4), p.563-582</ispartof><rights>Copyright 2004 INFORMS</rights><rights>COPYRIGHT 2004 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences Jul/Aug 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-59939d65b81a01adc75516d709eaf21b90a7467bd3db445e995acbacba28ccd83</citedby><cites>FETCH-LOGICAL-c500t-59939d65b81a01adc75516d709eaf21b90a7467bd3db445e995acbacba28ccd83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30036608$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/opre.1030.0107$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,776,780,799,3679,27901,27902,57992,58225,62589</link.rule.ids></links><search><creatorcontrib>Kumar, Sunil</creatorcontrib><creatorcontrib>Muthuraman, Kumar</creatorcontrib><title>A Numerical Method for Solving Singular Stochastic Control Problems</title><title>Operations research</title><description>Singular stochastic control has found diverse applications in operations management, economics, and finance. However, in all but the simplest of cases, singular stochastic control problems cannot be solved analytically. In this paper, we propose a method for numerically solving a class of singular stochastic control problems. We combine finite element methods that numerically solve partial differential equations with a policy update procedure based on the principle of smooth pasting to iteratively solve Hamilton-Jacobi-Bellman equations associated with the stochastic control problem. A key feature of our method is that the presence of singular controls simplifies the procedure. We illustrate the method on two examples of singular stochastic control problems, one drawn from economics and the other from queueing systems.</description><subject>Analysis</subject><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Brownian approximations</subject><subject>Brownian motion</subject><subject>Carrying costs</subject><subject>Control theory</subject><subject>Cost control</subject><subject>diffusions</subject><subject>Dynamic programming</subject><subject>dynamic programming/optimal control</subject><subject>economics</subject><subject>HJB equations</subject><subject>investments under uncertainty</subject><subject>Mathematical procedures</subject><subject>Mathematical vectors</subject><subject>Methods</subject><subject>Network servers</subject><subject>Numerical methods</subject><subject>Operations management</subject><subject>Optimization</subject><subject>Partial differential equations</subject><subject>probability</subject><subject>queueing</subject><subject>Queuing</subject><subject>scheduling</subject><subject>singular stochastic control</subject><subject>Stochastic models</subject><subject>Stochastic processes</subject><subject>Studies</subject><subject>Technology application</subject><subject>Terminator regions</subject><issn>0030-364X</issn><issn>1526-5463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkc1LxDAQxYMouK5evQnFg7euk6ZJm-Oy-AV-wSp4C2ma7mZpmzVpFf97Uyp6ESUhA4_fmxnyEDrGMMNJnp3brdMzDARmgCHbQRNMExbTlJFdNIGgx4SlL_vowPsNAHDK6AQt5tF932hnlKyjO92tbRlV1kVLW7-ZdhUtw9PXMgidVWvpO6OihW07Z-vo0dmi1o0_RHuVrL0--qpT9Hx58bS4jm8frm4W89tYUYAuppwTXjJa5FgClqXKKMWszIBrWSW44CCzlGVFScoiTanmnEpVDDfJlSpzMkWnY9-ts6-99p3Y2N61YaRIMMcpJhwCFI_QStZamLaynZNqpVvtZG1bXZkgz3ESvijHLAv87Bc-nFI3Rv1lUM5673Qlts400n0IDGIIQgxBiCEIMQQRDCejYeM7675pEiJhDPKfjYfhrvH_9zsb-bVZrd-NG7cejAPoBU1EKigj5BMrXqDo</recordid><startdate>20040701</startdate><enddate>20040701</enddate><creator>Kumar, Sunil</creator><creator>Muthuraman, Kumar</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88F</scope><scope>8AL</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M1Q</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20040701</creationdate><title>A Numerical Method for Solving Singular Stochastic Control Problems</title><author>Kumar, Sunil ; Muthuraman, Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-59939d65b81a01adc75516d709eaf21b90a7467bd3db445e995acbacba28ccd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Analysis</topic><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Brownian approximations</topic><topic>Brownian motion</topic><topic>Carrying costs</topic><topic>Control theory</topic><topic>Cost control</topic><topic>diffusions</topic><topic>Dynamic programming</topic><topic>dynamic programming/optimal control</topic><topic>economics</topic><topic>HJB equations</topic><topic>investments under uncertainty</topic><topic>Mathematical procedures</topic><topic>Mathematical vectors</topic><topic>Methods</topic><topic>Network servers</topic><topic>Numerical methods</topic><topic>Operations management</topic><topic>Optimization</topic><topic>Partial differential equations</topic><topic>probability</topic><topic>queueing</topic><topic>Queuing</topic><topic>scheduling</topic><topic>singular stochastic control</topic><topic>Stochastic models</topic><topic>Stochastic processes</topic><topic>Studies</topic><topic>Technology application</topic><topic>Terminator regions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Sunil</creatorcontrib><creatorcontrib>Muthuraman, Kumar</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Sunil</au><au>Muthuraman, Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Numerical Method for Solving Singular Stochastic Control Problems</atitle><jtitle>Operations research</jtitle><date>2004-07-01</date><risdate>2004</risdate><volume>52</volume><issue>4</issue><spage>563</spage><epage>582</epage><pages>563-582</pages><issn>0030-364X</issn><eissn>1526-5463</eissn><coden>OPREAI</coden><abstract>Singular stochastic control has found diverse applications in operations management, economics, and finance. However, in all but the simplest of cases, singular stochastic control problems cannot be solved analytically. In this paper, we propose a method for numerically solving a class of singular stochastic control problems. We combine finite element methods that numerically solve partial differential equations with a policy update procedure based on the principle of smooth pasting to iteratively solve Hamilton-Jacobi-Bellman equations associated with the stochastic control problem. A key feature of our method is that the presence of singular controls simplifies the procedure. We illustrate the method on two examples of singular stochastic control problems, one drawn from economics and the other from queueing systems.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/opre.1030.0107</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0030-364X
ispartof Operations research, 2004-07, Vol.52 (4), p.563-582
issn 0030-364X
1526-5463
language eng
recordid cdi_crossref_primary_10_1287_opre_1030_0107
source Jstor Complete Legacy; INFORMS PubsOnLine; EBSCOhost Business Source Complete
subjects Analysis
Approximation
Boundary conditions
Brownian approximations
Brownian motion
Carrying costs
Control theory
Cost control
diffusions
Dynamic programming
dynamic programming/optimal control
economics
HJB equations
investments under uncertainty
Mathematical procedures
Mathematical vectors
Methods
Network servers
Numerical methods
Operations management
Optimization
Partial differential equations
probability
queueing
Queuing
scheduling
singular stochastic control
Stochastic models
Stochastic processes
Studies
Technology application
Terminator regions
title A Numerical Method for Solving Singular Stochastic Control Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A35%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Numerical%20Method%20for%20Solving%20Singular%20Stochastic%20Control%20Problems&rft.jtitle=Operations%20research&rft.au=Kumar,%20Sunil&rft.date=2004-07-01&rft.volume=52&rft.issue=4&rft.spage=563&rft.epage=582&rft.pages=563-582&rft.issn=0030-364X&rft.eissn=1526-5463&rft.coden=OPREAI&rft_id=info:doi/10.1287/opre.1030.0107&rft_dat=%3Cgale_cross%3EA121078167%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=219141390&rft_id=info:pmid/&rft_galeid=A121078167&rft_jstor_id=30036608&rfr_iscdi=true