A Numerical Method for Solving Singular Stochastic Control Problems
Singular stochastic control has found diverse applications in operations management, economics, and finance. However, in all but the simplest of cases, singular stochastic control problems cannot be solved analytically. In this paper, we propose a method for numerically solving a class of singular s...
Gespeichert in:
Veröffentlicht in: | Operations research 2004-07, Vol.52 (4), p.563-582 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 582 |
---|---|
container_issue | 4 |
container_start_page | 563 |
container_title | Operations research |
container_volume | 52 |
creator | Kumar, Sunil Muthuraman, Kumar |
description | Singular stochastic control has found diverse applications in operations management, economics, and finance. However, in all but the simplest of cases, singular stochastic control problems cannot be solved analytically. In this paper, we propose a method for numerically solving a class of singular stochastic control problems. We combine finite element methods that numerically solve partial differential equations with a policy update procedure based on the principle of smooth pasting to iteratively solve Hamilton-Jacobi-Bellman equations associated with the stochastic control problem. A key feature of our method is that the presence of singular controls simplifies the procedure. We illustrate the method on two examples of singular stochastic control problems, one drawn from economics and the other from queueing systems. |
doi_str_mv | 10.1287/opre.1030.0107 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1287_opre_1030_0107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A121078167</galeid><jstor_id>30036608</jstor_id><sourcerecordid>A121078167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-59939d65b81a01adc75516d709eaf21b90a7467bd3db445e995acbacba28ccd83</originalsourceid><addsrcrecordid>eNqFkc1LxDAQxYMouK5evQnFg7euk6ZJm-Oy-AV-wSp4C2ma7mZpmzVpFf97Uyp6ESUhA4_fmxnyEDrGMMNJnp3brdMzDARmgCHbQRNMExbTlJFdNIGgx4SlL_vowPsNAHDK6AQt5tF932hnlKyjO92tbRlV1kVLW7-ZdhUtw9PXMgidVWvpO6OihW07Z-vo0dmi1o0_RHuVrL0--qpT9Hx58bS4jm8frm4W89tYUYAuppwTXjJa5FgClqXKKMWszIBrWSW44CCzlGVFScoiTanmnEpVDDfJlSpzMkWnY9-ts6-99p3Y2N61YaRIMMcpJhwCFI_QStZamLaynZNqpVvtZG1bXZkgz3ESvijHLAv87Bc-nFI3Rv1lUM5673Qlts400n0IDGIIQgxBiCEIMQQRDCejYeM7675pEiJhDPKfjYfhrvH_9zsb-bVZrd-NG7cejAPoBU1EKigj5BMrXqDo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>219141390</pqid></control><display><type>article</type><title>A Numerical Method for Solving Singular Stochastic Control Problems</title><source>Jstor Complete Legacy</source><source>INFORMS PubsOnLine</source><source>EBSCOhost Business Source Complete</source><creator>Kumar, Sunil ; Muthuraman, Kumar</creator><creatorcontrib>Kumar, Sunil ; Muthuraman, Kumar</creatorcontrib><description>Singular stochastic control has found diverse applications in operations management, economics, and finance. However, in all but the simplest of cases, singular stochastic control problems cannot be solved analytically. In this paper, we propose a method for numerically solving a class of singular stochastic control problems. We combine finite element methods that numerically solve partial differential equations with a policy update procedure based on the principle of smooth pasting to iteratively solve Hamilton-Jacobi-Bellman equations associated with the stochastic control problem. A key feature of our method is that the presence of singular controls simplifies the procedure. We illustrate the method on two examples of singular stochastic control problems, one drawn from economics and the other from queueing systems.</description><identifier>ISSN: 0030-364X</identifier><identifier>EISSN: 1526-5463</identifier><identifier>DOI: 10.1287/opre.1030.0107</identifier><identifier>CODEN: OPREAI</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>Analysis ; Approximation ; Boundary conditions ; Brownian approximations ; Brownian motion ; Carrying costs ; Control theory ; Cost control ; diffusions ; Dynamic programming ; dynamic programming/optimal control ; economics ; HJB equations ; investments under uncertainty ; Mathematical procedures ; Mathematical vectors ; Methods ; Network servers ; Numerical methods ; Operations management ; Optimization ; Partial differential equations ; probability ; queueing ; Queuing ; scheduling ; singular stochastic control ; Stochastic models ; Stochastic processes ; Studies ; Technology application ; Terminator regions</subject><ispartof>Operations research, 2004-07, Vol.52 (4), p.563-582</ispartof><rights>Copyright 2004 INFORMS</rights><rights>COPYRIGHT 2004 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences Jul/Aug 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-59939d65b81a01adc75516d709eaf21b90a7467bd3db445e995acbacba28ccd83</citedby><cites>FETCH-LOGICAL-c500t-59939d65b81a01adc75516d709eaf21b90a7467bd3db445e995acbacba28ccd83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30036608$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/opre.1030.0107$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,776,780,799,3679,27901,27902,57992,58225,62589</link.rule.ids></links><search><creatorcontrib>Kumar, Sunil</creatorcontrib><creatorcontrib>Muthuraman, Kumar</creatorcontrib><title>A Numerical Method for Solving Singular Stochastic Control Problems</title><title>Operations research</title><description>Singular stochastic control has found diverse applications in operations management, economics, and finance. However, in all but the simplest of cases, singular stochastic control problems cannot be solved analytically. In this paper, we propose a method for numerically solving a class of singular stochastic control problems. We combine finite element methods that numerically solve partial differential equations with a policy update procedure based on the principle of smooth pasting to iteratively solve Hamilton-Jacobi-Bellman equations associated with the stochastic control problem. A key feature of our method is that the presence of singular controls simplifies the procedure. We illustrate the method on two examples of singular stochastic control problems, one drawn from economics and the other from queueing systems.</description><subject>Analysis</subject><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Brownian approximations</subject><subject>Brownian motion</subject><subject>Carrying costs</subject><subject>Control theory</subject><subject>Cost control</subject><subject>diffusions</subject><subject>Dynamic programming</subject><subject>dynamic programming/optimal control</subject><subject>economics</subject><subject>HJB equations</subject><subject>investments under uncertainty</subject><subject>Mathematical procedures</subject><subject>Mathematical vectors</subject><subject>Methods</subject><subject>Network servers</subject><subject>Numerical methods</subject><subject>Operations management</subject><subject>Optimization</subject><subject>Partial differential equations</subject><subject>probability</subject><subject>queueing</subject><subject>Queuing</subject><subject>scheduling</subject><subject>singular stochastic control</subject><subject>Stochastic models</subject><subject>Stochastic processes</subject><subject>Studies</subject><subject>Technology application</subject><subject>Terminator regions</subject><issn>0030-364X</issn><issn>1526-5463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkc1LxDAQxYMouK5evQnFg7euk6ZJm-Oy-AV-wSp4C2ma7mZpmzVpFf97Uyp6ESUhA4_fmxnyEDrGMMNJnp3brdMzDARmgCHbQRNMExbTlJFdNIGgx4SlL_vowPsNAHDK6AQt5tF932hnlKyjO92tbRlV1kVLW7-ZdhUtw9PXMgidVWvpO6OihW07Z-vo0dmi1o0_RHuVrL0--qpT9Hx58bS4jm8frm4W89tYUYAuppwTXjJa5FgClqXKKMWszIBrWSW44CCzlGVFScoiTanmnEpVDDfJlSpzMkWnY9-ts6-99p3Y2N61YaRIMMcpJhwCFI_QStZamLaynZNqpVvtZG1bXZkgz3ESvijHLAv87Bc-nFI3Rv1lUM5673Qlts400n0IDGIIQgxBiCEIMQQRDCejYeM7675pEiJhDPKfjYfhrvH_9zsb-bVZrd-NG7cejAPoBU1EKigj5BMrXqDo</recordid><startdate>20040701</startdate><enddate>20040701</enddate><creator>Kumar, Sunil</creator><creator>Muthuraman, Kumar</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88F</scope><scope>8AL</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M1Q</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20040701</creationdate><title>A Numerical Method for Solving Singular Stochastic Control Problems</title><author>Kumar, Sunil ; Muthuraman, Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-59939d65b81a01adc75516d709eaf21b90a7467bd3db445e995acbacba28ccd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Analysis</topic><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Brownian approximations</topic><topic>Brownian motion</topic><topic>Carrying costs</topic><topic>Control theory</topic><topic>Cost control</topic><topic>diffusions</topic><topic>Dynamic programming</topic><topic>dynamic programming/optimal control</topic><topic>economics</topic><topic>HJB equations</topic><topic>investments under uncertainty</topic><topic>Mathematical procedures</topic><topic>Mathematical vectors</topic><topic>Methods</topic><topic>Network servers</topic><topic>Numerical methods</topic><topic>Operations management</topic><topic>Optimization</topic><topic>Partial differential equations</topic><topic>probability</topic><topic>queueing</topic><topic>Queuing</topic><topic>scheduling</topic><topic>singular stochastic control</topic><topic>Stochastic models</topic><topic>Stochastic processes</topic><topic>Studies</topic><topic>Technology application</topic><topic>Terminator regions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Sunil</creatorcontrib><creatorcontrib>Muthuraman, Kumar</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Sunil</au><au>Muthuraman, Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Numerical Method for Solving Singular Stochastic Control Problems</atitle><jtitle>Operations research</jtitle><date>2004-07-01</date><risdate>2004</risdate><volume>52</volume><issue>4</issue><spage>563</spage><epage>582</epage><pages>563-582</pages><issn>0030-364X</issn><eissn>1526-5463</eissn><coden>OPREAI</coden><abstract>Singular stochastic control has found diverse applications in operations management, economics, and finance. However, in all but the simplest of cases, singular stochastic control problems cannot be solved analytically. In this paper, we propose a method for numerically solving a class of singular stochastic control problems. We combine finite element methods that numerically solve partial differential equations with a policy update procedure based on the principle of smooth pasting to iteratively solve Hamilton-Jacobi-Bellman equations associated with the stochastic control problem. A key feature of our method is that the presence of singular controls simplifies the procedure. We illustrate the method on two examples of singular stochastic control problems, one drawn from economics and the other from queueing systems.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/opre.1030.0107</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0030-364X |
ispartof | Operations research, 2004-07, Vol.52 (4), p.563-582 |
issn | 0030-364X 1526-5463 |
language | eng |
recordid | cdi_crossref_primary_10_1287_opre_1030_0107 |
source | Jstor Complete Legacy; INFORMS PubsOnLine; EBSCOhost Business Source Complete |
subjects | Analysis Approximation Boundary conditions Brownian approximations Brownian motion Carrying costs Control theory Cost control diffusions Dynamic programming dynamic programming/optimal control economics HJB equations investments under uncertainty Mathematical procedures Mathematical vectors Methods Network servers Numerical methods Operations management Optimization Partial differential equations probability queueing Queuing scheduling singular stochastic control Stochastic models Stochastic processes Studies Technology application Terminator regions |
title | A Numerical Method for Solving Singular Stochastic Control Problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A35%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Numerical%20Method%20for%20Solving%20Singular%20Stochastic%20Control%20Problems&rft.jtitle=Operations%20research&rft.au=Kumar,%20Sunil&rft.date=2004-07-01&rft.volume=52&rft.issue=4&rft.spage=563&rft.epage=582&rft.pages=563-582&rft.issn=0030-364X&rft.eissn=1526-5463&rft.coden=OPREAI&rft_id=info:doi/10.1287/opre.1030.0107&rft_dat=%3Cgale_cross%3EA121078167%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=219141390&rft_id=info:pmid/&rft_galeid=A121078167&rft_jstor_id=30036608&rfr_iscdi=true |