Inventory Record Inaccuracy: An Empirical Analysis

Traditional inventory models, with a few exceptions, do not account for the existence of inventory record inaccuracy (IRI), and those that do treat IRI as random. This study explores IRI observed both within and across product categories and retail stores. Examining nearly 370,000 inventory records...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Management science 2008-04, Vol.54 (4), p.627-641
Hauptverfasser: DeHoratius, Nicole, Raman, Ananth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 641
container_issue 4
container_start_page 627
container_title Management science
container_volume 54
creator DeHoratius, Nicole
Raman, Ananth
description Traditional inventory models, with a few exceptions, do not account for the existence of inventory record inaccuracy (IRI), and those that do treat IRI as random. This study explores IRI observed both within and across product categories and retail stores. Examining nearly 370,000 inventory records from 37 stores of one retailer, we find 65% to be inaccurate. We characterize the distribution of IRI and show, using hierarchical linear modeling (HLM), that 26.4% of the total variance in IRI lies between product categories and that 2.7% lies between stores. We identify several factors that mitigate record inaccuracy, such as inventory auditing practices, and several factors that exacerbate record inaccuracy, such as the complexity of the store environment and the distribution structure. Collectively, these covariates explain 67.6% and 69.0% of the variance in IRI across stores and product categories, respectively. Our findings underscore the need to design processes to reduce the occurrence of IRI and highlight factors that can be incorporated into inventory planning tools developed to account for its presence.
doi_str_mv 10.1287/mnsc.1070.0789
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1287_mnsc_1070_0789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A182605329</galeid><jstor_id>20122416</jstor_id><sourcerecordid>A182605329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c594t-405b323565306c4280539aa1c7164a700dd08a3d887d8324a6ca851ba0eb096b3</originalsourceid><addsrcrecordid>eNqFkd-L1DAQx4souJ6--iYsgvrUdfI79W05Tl05EESfQzZNd7O0aU26d_S_d2qPU0SUMAlJPjPMd75F8ZzAhlCt3nYxuw0BBRtQunpQrIigshQCyMNiBUBFSSqoHhdPcj4BIKPkqqC7eOPj2Kdp_cW7PtXrXbTOnZN107v1Nq6vuiGk4GyLF9tOOeSnxaPGttk_uzsvim_vr75efiyvP3_YXW6vSycqPpYcxJ5RJqRgIB2nGgSrrCVOEcmtAqhr0JbVWqtaM8qtdFYLsrfg91DJPbsoXi91h9R_P_s8mi5k59vWRt-fs2FSV1wTjuDLP8BTf07YbTaUMKI4ykaoXKCDbb0JselH1Hjw0Sfb9tE3AZ-3RFOJfdKZ3_yFx1X7Lrh_JbjU55x8Y4YUOpsmQ8DMBpnZIDMbZGaDMOHTkpD84N09HWLXp5_ojWFWcNwmDAqg8QgY89OAIakykhNzHDss9upuBjajWU2y0YV8X5Si_UrqeVYvFu6U0fTf_gmlnMhfY5oVpy7_X8SbhT-Gw_E2pGVUc2JnkQwGBXCDnbIfH6TMnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213174909</pqid></control><display><type>article</type><title>Inventory Record Inaccuracy: An Empirical Analysis</title><source>Jstor Complete Legacy</source><source>RePEc</source><source>INFORMS PubsOnLine</source><source>EBSCOhost Business Source Complete</source><creator>DeHoratius, Nicole ; Raman, Ananth</creator><creatorcontrib>DeHoratius, Nicole ; Raman, Ananth</creatorcontrib><description>Traditional inventory models, with a few exceptions, do not account for the existence of inventory record inaccuracy (IRI), and those that do treat IRI as random. This study explores IRI observed both within and across product categories and retail stores. Examining nearly 370,000 inventory records from 37 stores of one retailer, we find 65% to be inaccurate. We characterize the distribution of IRI and show, using hierarchical linear modeling (HLM), that 26.4% of the total variance in IRI lies between product categories and that 2.7% lies between stores. We identify several factors that mitigate record inaccuracy, such as inventory auditing practices, and several factors that exacerbate record inaccuracy, such as the complexity of the store environment and the distribution structure. Collectively, these covariates explain 67.6% and 69.0% of the variance in IRI across stores and product categories, respectively. Our findings underscore the need to design processes to reduce the occurrence of IRI and highlight factors that can be incorporated into inventory planning tools developed to account for its presence.</description><identifier>ISSN: 0025-1909</identifier><identifier>EISSN: 1526-5501</identifier><identifier>DOI: 10.1287/mnsc.1070.0789</identifier><identifier>CODEN: MSCIAM</identifier><language>eng</language><publisher>Linthicum, MD: INFORMS</publisher><subject>Applied sciences ; Business audits ; Business studies ; Control systems ; Exact sciences and technology ; execution ; Firm modelling ; Industrial accounting ; Information technology ; Inventories ; Inventory ; Inventory control ; Inventory control, production control. Distribution ; Inventory management ; Logistics ; Management audits ; Management science ; Mechanical engineering. Machine design ; Multilevel models ; Operational research and scientific management ; Operational research. Management science ; Product variety ; Production management ; record inaccuracy ; Records management ; retail ; Retail industry ; Retail stores ; Retail trade ; Retailing ; Studies ; Supply chain management ; Supply chains ; Vendors</subject><ispartof>Management science, 2008-04, Vol.54 (4), p.627-641</ispartof><rights>Copyright 2008 INFORMS</rights><rights>2008 INIST-CNRS</rights><rights>COPYRIGHT 2008 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences Apr 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c594t-405b323565306c4280539aa1c7164a700dd08a3d887d8324a6ca851ba0eb096b3</citedby><cites>FETCH-LOGICAL-c594t-405b323565306c4280539aa1c7164a700dd08a3d887d8324a6ca851ba0eb096b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20122416$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/mnsc.1070.0789$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,776,780,799,3679,3994,27901,27902,57992,58225,62589</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20257684$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/inmormnsc/v_3a54_3ay_3a2008_3ai_3a4_3ap_3a627-641.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>DeHoratius, Nicole</creatorcontrib><creatorcontrib>Raman, Ananth</creatorcontrib><title>Inventory Record Inaccuracy: An Empirical Analysis</title><title>Management science</title><description>Traditional inventory models, with a few exceptions, do not account for the existence of inventory record inaccuracy (IRI), and those that do treat IRI as random. This study explores IRI observed both within and across product categories and retail stores. Examining nearly 370,000 inventory records from 37 stores of one retailer, we find 65% to be inaccurate. We characterize the distribution of IRI and show, using hierarchical linear modeling (HLM), that 26.4% of the total variance in IRI lies between product categories and that 2.7% lies between stores. We identify several factors that mitigate record inaccuracy, such as inventory auditing practices, and several factors that exacerbate record inaccuracy, such as the complexity of the store environment and the distribution structure. Collectively, these covariates explain 67.6% and 69.0% of the variance in IRI across stores and product categories, respectively. Our findings underscore the need to design processes to reduce the occurrence of IRI and highlight factors that can be incorporated into inventory planning tools developed to account for its presence.</description><subject>Applied sciences</subject><subject>Business audits</subject><subject>Business studies</subject><subject>Control systems</subject><subject>Exact sciences and technology</subject><subject>execution</subject><subject>Firm modelling</subject><subject>Industrial accounting</subject><subject>Information technology</subject><subject>Inventories</subject><subject>Inventory</subject><subject>Inventory control</subject><subject>Inventory control, production control. Distribution</subject><subject>Inventory management</subject><subject>Logistics</subject><subject>Management audits</subject><subject>Management science</subject><subject>Mechanical engineering. Machine design</subject><subject>Multilevel models</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Product variety</subject><subject>Production management</subject><subject>record inaccuracy</subject><subject>Records management</subject><subject>retail</subject><subject>Retail industry</subject><subject>Retail stores</subject><subject>Retail trade</subject><subject>Retailing</subject><subject>Studies</subject><subject>Supply chain management</subject><subject>Supply chains</subject><subject>Vendors</subject><issn>0025-1909</issn><issn>1526-5501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFkd-L1DAQx4souJ6--iYsgvrUdfI79W05Tl05EESfQzZNd7O0aU26d_S_d2qPU0SUMAlJPjPMd75F8ZzAhlCt3nYxuw0BBRtQunpQrIigshQCyMNiBUBFSSqoHhdPcj4BIKPkqqC7eOPj2Kdp_cW7PtXrXbTOnZN107v1Nq6vuiGk4GyLF9tOOeSnxaPGttk_uzsvim_vr75efiyvP3_YXW6vSycqPpYcxJ5RJqRgIB2nGgSrrCVOEcmtAqhr0JbVWqtaM8qtdFYLsrfg91DJPbsoXi91h9R_P_s8mi5k59vWRt-fs2FSV1wTjuDLP8BTf07YbTaUMKI4ykaoXKCDbb0JselH1Hjw0Sfb9tE3AZ-3RFOJfdKZ3_yFx1X7Lrh_JbjU55x8Y4YUOpsmQ8DMBpnZIDMbZGaDMOHTkpD84N09HWLXp5_ojWFWcNwmDAqg8QgY89OAIakykhNzHDss9upuBjajWU2y0YV8X5Si_UrqeVYvFu6U0fTf_gmlnMhfY5oVpy7_X8SbhT-Gw_E2pGVUc2JnkQwGBXCDnbIfH6TMnQ</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>DeHoratius, Nicole</creator><creator>Raman, Ananth</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20080401</creationdate><title>Inventory Record Inaccuracy: An Empirical Analysis</title><author>DeHoratius, Nicole ; Raman, Ananth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c594t-405b323565306c4280539aa1c7164a700dd08a3d887d8324a6ca851ba0eb096b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Business audits</topic><topic>Business studies</topic><topic>Control systems</topic><topic>Exact sciences and technology</topic><topic>execution</topic><topic>Firm modelling</topic><topic>Industrial accounting</topic><topic>Information technology</topic><topic>Inventories</topic><topic>Inventory</topic><topic>Inventory control</topic><topic>Inventory control, production control. Distribution</topic><topic>Inventory management</topic><topic>Logistics</topic><topic>Management audits</topic><topic>Management science</topic><topic>Mechanical engineering. Machine design</topic><topic>Multilevel models</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Product variety</topic><topic>Production management</topic><topic>record inaccuracy</topic><topic>Records management</topic><topic>retail</topic><topic>Retail industry</topic><topic>Retail stores</topic><topic>Retail trade</topic><topic>Retailing</topic><topic>Studies</topic><topic>Supply chain management</topic><topic>Supply chains</topic><topic>Vendors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DeHoratius, Nicole</creatorcontrib><creatorcontrib>Raman, Ananth</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Management science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DeHoratius, Nicole</au><au>Raman, Ananth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inventory Record Inaccuracy: An Empirical Analysis</atitle><jtitle>Management science</jtitle><date>2008-04-01</date><risdate>2008</risdate><volume>54</volume><issue>4</issue><spage>627</spage><epage>641</epage><pages>627-641</pages><issn>0025-1909</issn><eissn>1526-5501</eissn><coden>MSCIAM</coden><abstract>Traditional inventory models, with a few exceptions, do not account for the existence of inventory record inaccuracy (IRI), and those that do treat IRI as random. This study explores IRI observed both within and across product categories and retail stores. Examining nearly 370,000 inventory records from 37 stores of one retailer, we find 65% to be inaccurate. We characterize the distribution of IRI and show, using hierarchical linear modeling (HLM), that 26.4% of the total variance in IRI lies between product categories and that 2.7% lies between stores. We identify several factors that mitigate record inaccuracy, such as inventory auditing practices, and several factors that exacerbate record inaccuracy, such as the complexity of the store environment and the distribution structure. Collectively, these covariates explain 67.6% and 69.0% of the variance in IRI across stores and product categories, respectively. Our findings underscore the need to design processes to reduce the occurrence of IRI and highlight factors that can be incorporated into inventory planning tools developed to account for its presence.</abstract><cop>Linthicum, MD</cop><pub>INFORMS</pub><doi>10.1287/mnsc.1070.0789</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-1909
ispartof Management science, 2008-04, Vol.54 (4), p.627-641
issn 0025-1909
1526-5501
language eng
recordid cdi_crossref_primary_10_1287_mnsc_1070_0789
source Jstor Complete Legacy; RePEc; INFORMS PubsOnLine; EBSCOhost Business Source Complete
subjects Applied sciences
Business audits
Business studies
Control systems
Exact sciences and technology
execution
Firm modelling
Industrial accounting
Information technology
Inventories
Inventory
Inventory control
Inventory control, production control. Distribution
Inventory management
Logistics
Management audits
Management science
Mechanical engineering. Machine design
Multilevel models
Operational research and scientific management
Operational research. Management science
Product variety
Production management
record inaccuracy
Records management
retail
Retail industry
Retail stores
Retail trade
Retailing
Studies
Supply chain management
Supply chains
Vendors
title Inventory Record Inaccuracy: An Empirical Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T05%3A11%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inventory%20Record%20Inaccuracy:%20An%20Empirical%20Analysis&rft.jtitle=Management%20science&rft.au=DeHoratius,%20Nicole&rft.date=2008-04-01&rft.volume=54&rft.issue=4&rft.spage=627&rft.epage=641&rft.pages=627-641&rft.issn=0025-1909&rft.eissn=1526-5501&rft.coden=MSCIAM&rft_id=info:doi/10.1287/mnsc.1070.0789&rft_dat=%3Cgale_cross%3EA182605329%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213174909&rft_id=info:pmid/&rft_galeid=A182605329&rft_jstor_id=20122416&rfr_iscdi=true