Molecular mechanism for preQ 1 -II riboswitch function revealed by molecular dynamics

Riboswitches are RNA molecules that regulate gene expression using conformational change, affected by binding of small molecule ligands. A crystal structure of a ligand-bound class II preQ 1 riboswitch has been determined in a previous structural study. To gain insight into the dynamics of this ribo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RNA (Cambridge) 2015-11, Vol.21 (11), p.1898-1907
Hauptverfasser: Aytenfisu, Asaminew H., Liberman, Joseph A., Wedekind, Joseph E., Mathews, David H.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1907
container_issue 11
container_start_page 1898
container_title RNA (Cambridge)
container_volume 21
creator Aytenfisu, Asaminew H.
Liberman, Joseph A.
Wedekind, Joseph E.
Mathews, David H.
description Riboswitches are RNA molecules that regulate gene expression using conformational change, affected by binding of small molecule ligands. A crystal structure of a ligand-bound class II preQ 1 riboswitch has been determined in a previous structural study. To gain insight into the dynamics of this riboswitch in solution, eight total molecular dynamic simulations, four with and four without ligand, were performed using the Amber force field. In the presence of ligand, all four of the simulations demonstrated rearranged base pairs at the 3′ end, consistent with expected base-pairing from comparative sequence analysis in a prior bioinformatic analysis; this suggests the pairing in this region was altered by crystallization. Additionally, in the absence of ligand, three of the simulations demonstrated similar changes in base-pairing at the ligand binding site. Significantly, although most of the riboswitch architecture remained intact in the respective trajectories, the P3 stem was destabilized in the ligand-free simulations in a way that exposed the Shine–Dalgarno sequence. This work illustrates how destabilization of two major groove base triples can influence a nearby H-type pseudoknot and provides a mechanism for control of gene expression by a fold that is frequently found in bacterial riboswitches.
doi_str_mv 10.1261/rna.051367.115
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1261_rna_051367_115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1261_rna_051367_115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c845-1de1c997f125c3f33667fc6b05ddf7670fb26eb35579f51f638852164ca4ad8e3</originalsourceid><addsrcrecordid>eNo9kEtLAzEcxIMoWKtXz_kCWfPfbB57lOKjUBGhnkM2DxrZR0laZb-9kRZPM8zAMPwQugdaQS3gIY2mohyYkBUAv0ALaERLWkrhsnjGOVFM1dfoJuevErJSL9Dn29R7e-xNwoO3OzPGPOAwJbxP_gMDJus1TrGb8k882B0Ox9Ee4jTi5L-96b3D3YyH_wk3j2aINt-iq2D67O_OukTb56ft6pVs3l_Wq8cNsarhBJwH27YyQM0tC4wJIYMVHeXOBSkkDV0tfFeeyzZwCIIpxWsQjTWNccqzJapOszZNOScf9D7FwaRZA9V_THRhok9MdGHCfgF3H1VP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Molecular mechanism for preQ 1 -II riboswitch function revealed by molecular dynamics</title><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Aytenfisu, Asaminew H. ; Liberman, Joseph A. ; Wedekind, Joseph E. ; Mathews, David H.</creator><creatorcontrib>Aytenfisu, Asaminew H. ; Liberman, Joseph A. ; Wedekind, Joseph E. ; Mathews, David H.</creatorcontrib><description>Riboswitches are RNA molecules that regulate gene expression using conformational change, affected by binding of small molecule ligands. A crystal structure of a ligand-bound class II preQ 1 riboswitch has been determined in a previous structural study. To gain insight into the dynamics of this riboswitch in solution, eight total molecular dynamic simulations, four with and four without ligand, were performed using the Amber force field. In the presence of ligand, all four of the simulations demonstrated rearranged base pairs at the 3′ end, consistent with expected base-pairing from comparative sequence analysis in a prior bioinformatic analysis; this suggests the pairing in this region was altered by crystallization. Additionally, in the absence of ligand, three of the simulations demonstrated similar changes in base-pairing at the ligand binding site. Significantly, although most of the riboswitch architecture remained intact in the respective trajectories, the P3 stem was destabilized in the ligand-free simulations in a way that exposed the Shine–Dalgarno sequence. This work illustrates how destabilization of two major groove base triples can influence a nearby H-type pseudoknot and provides a mechanism for control of gene expression by a fold that is frequently found in bacterial riboswitches.</description><identifier>ISSN: 1355-8382</identifier><identifier>EISSN: 1469-9001</identifier><identifier>DOI: 10.1261/rna.051367.115</identifier><language>eng</language><ispartof>RNA (Cambridge), 2015-11, Vol.21 (11), p.1898-1907</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c845-1de1c997f125c3f33667fc6b05ddf7670fb26eb35579f51f638852164ca4ad8e3</citedby><cites>FETCH-LOGICAL-c845-1de1c997f125c3f33667fc6b05ddf7670fb26eb35579f51f638852164ca4ad8e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Aytenfisu, Asaminew H.</creatorcontrib><creatorcontrib>Liberman, Joseph A.</creatorcontrib><creatorcontrib>Wedekind, Joseph E.</creatorcontrib><creatorcontrib>Mathews, David H.</creatorcontrib><title>Molecular mechanism for preQ 1 -II riboswitch function revealed by molecular dynamics</title><title>RNA (Cambridge)</title><description>Riboswitches are RNA molecules that regulate gene expression using conformational change, affected by binding of small molecule ligands. A crystal structure of a ligand-bound class II preQ 1 riboswitch has been determined in a previous structural study. To gain insight into the dynamics of this riboswitch in solution, eight total molecular dynamic simulations, four with and four without ligand, were performed using the Amber force field. In the presence of ligand, all four of the simulations demonstrated rearranged base pairs at the 3′ end, consistent with expected base-pairing from comparative sequence analysis in a prior bioinformatic analysis; this suggests the pairing in this region was altered by crystallization. Additionally, in the absence of ligand, three of the simulations demonstrated similar changes in base-pairing at the ligand binding site. Significantly, although most of the riboswitch architecture remained intact in the respective trajectories, the P3 stem was destabilized in the ligand-free simulations in a way that exposed the Shine–Dalgarno sequence. This work illustrates how destabilization of two major groove base triples can influence a nearby H-type pseudoknot and provides a mechanism for control of gene expression by a fold that is frequently found in bacterial riboswitches.</description><issn>1355-8382</issn><issn>1469-9001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEcxIMoWKtXz_kCWfPfbB57lOKjUBGhnkM2DxrZR0laZb-9kRZPM8zAMPwQugdaQS3gIY2mohyYkBUAv0ALaERLWkrhsnjGOVFM1dfoJuevErJSL9Dn29R7e-xNwoO3OzPGPOAwJbxP_gMDJus1TrGb8k882B0Ox9Ee4jTi5L-96b3D3YyH_wk3j2aINt-iq2D67O_OukTb56ft6pVs3l_Wq8cNsarhBJwH27YyQM0tC4wJIYMVHeXOBSkkDV0tfFeeyzZwCIIpxWsQjTWNccqzJapOszZNOScf9D7FwaRZA9V_THRhok9MdGHCfgF3H1VP</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Aytenfisu, Asaminew H.</creator><creator>Liberman, Joseph A.</creator><creator>Wedekind, Joseph E.</creator><creator>Mathews, David H.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201511</creationdate><title>Molecular mechanism for preQ 1 -II riboswitch function revealed by molecular dynamics</title><author>Aytenfisu, Asaminew H. ; Liberman, Joseph A. ; Wedekind, Joseph E. ; Mathews, David H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c845-1de1c997f125c3f33667fc6b05ddf7670fb26eb35579f51f638852164ca4ad8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aytenfisu, Asaminew H.</creatorcontrib><creatorcontrib>Liberman, Joseph A.</creatorcontrib><creatorcontrib>Wedekind, Joseph E.</creatorcontrib><creatorcontrib>Mathews, David H.</creatorcontrib><collection>CrossRef</collection><jtitle>RNA (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aytenfisu, Asaminew H.</au><au>Liberman, Joseph A.</au><au>Wedekind, Joseph E.</au><au>Mathews, David H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular mechanism for preQ 1 -II riboswitch function revealed by molecular dynamics</atitle><jtitle>RNA (Cambridge)</jtitle><date>2015-11</date><risdate>2015</risdate><volume>21</volume><issue>11</issue><spage>1898</spage><epage>1907</epage><pages>1898-1907</pages><issn>1355-8382</issn><eissn>1469-9001</eissn><abstract>Riboswitches are RNA molecules that regulate gene expression using conformational change, affected by binding of small molecule ligands. A crystal structure of a ligand-bound class II preQ 1 riboswitch has been determined in a previous structural study. To gain insight into the dynamics of this riboswitch in solution, eight total molecular dynamic simulations, four with and four without ligand, were performed using the Amber force field. In the presence of ligand, all four of the simulations demonstrated rearranged base pairs at the 3′ end, consistent with expected base-pairing from comparative sequence analysis in a prior bioinformatic analysis; this suggests the pairing in this region was altered by crystallization. Additionally, in the absence of ligand, three of the simulations demonstrated similar changes in base-pairing at the ligand binding site. Significantly, although most of the riboswitch architecture remained intact in the respective trajectories, the P3 stem was destabilized in the ligand-free simulations in a way that exposed the Shine–Dalgarno sequence. This work illustrates how destabilization of two major groove base triples can influence a nearby H-type pseudoknot and provides a mechanism for control of gene expression by a fold that is frequently found in bacterial riboswitches.</abstract><doi>10.1261/rna.051367.115</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1355-8382
ispartof RNA (Cambridge), 2015-11, Vol.21 (11), p.1898-1907
issn 1355-8382
1469-9001
language eng
recordid cdi_crossref_primary_10_1261_rna_051367_115
source EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
title Molecular mechanism for preQ 1 -II riboswitch function revealed by molecular dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A11%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20mechanism%20for%20preQ%201%20-II%20riboswitch%20function%20revealed%20by%20molecular%20dynamics&rft.jtitle=RNA%20(Cambridge)&rft.au=Aytenfisu,%20Asaminew%20H.&rft.date=2015-11&rft.volume=21&rft.issue=11&rft.spage=1898&rft.epage=1907&rft.pages=1898-1907&rft.issn=1355-8382&rft.eissn=1469-9001&rft_id=info:doi/10.1261/rna.051367.115&rft_dat=%3Ccrossref%3E10_1261_rna_051367_115%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true