Molecular mechanism for preQ 1 -II riboswitch function revealed by molecular dynamics
Riboswitches are RNA molecules that regulate gene expression using conformational change, affected by binding of small molecule ligands. A crystal structure of a ligand-bound class II preQ 1 riboswitch has been determined in a previous structural study. To gain insight into the dynamics of this ribo...
Gespeichert in:
Veröffentlicht in: | RNA (Cambridge) 2015-11, Vol.21 (11), p.1898-1907 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1907 |
---|---|
container_issue | 11 |
container_start_page | 1898 |
container_title | RNA (Cambridge) |
container_volume | 21 |
creator | Aytenfisu, Asaminew H. Liberman, Joseph A. Wedekind, Joseph E. Mathews, David H. |
description | Riboswitches are RNA molecules that regulate gene expression using conformational change, affected by binding of small molecule ligands. A crystal structure of a ligand-bound class II preQ
1
riboswitch has been determined in a previous structural study. To gain insight into the dynamics of this riboswitch in solution, eight total molecular dynamic simulations, four with and four without ligand, were performed using the Amber force field. In the presence of ligand, all four of the simulations demonstrated rearranged base pairs at the 3′ end, consistent with expected base-pairing from comparative sequence analysis in a prior bioinformatic analysis; this suggests the pairing in this region was altered by crystallization. Additionally, in the absence of ligand, three of the simulations demonstrated similar changes in base-pairing at the ligand binding site. Significantly, although most of the riboswitch architecture remained intact in the respective trajectories, the P3 stem was destabilized in the ligand-free simulations in a way that exposed the Shine–Dalgarno sequence. This work illustrates how destabilization of two major groove base triples can influence a nearby H-type pseudoknot and provides a mechanism for control of gene expression by a fold that is frequently found in bacterial riboswitches. |
doi_str_mv | 10.1261/rna.051367.115 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1261_rna_051367_115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1261_rna_051367_115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c845-1de1c997f125c3f33667fc6b05ddf7670fb26eb35579f51f638852164ca4ad8e3</originalsourceid><addsrcrecordid>eNo9kEtLAzEcxIMoWKtXz_kCWfPfbB57lOKjUBGhnkM2DxrZR0laZb-9kRZPM8zAMPwQugdaQS3gIY2mohyYkBUAv0ALaERLWkrhsnjGOVFM1dfoJuevErJSL9Dn29R7e-xNwoO3OzPGPOAwJbxP_gMDJus1TrGb8k882B0Ox9Ee4jTi5L-96b3D3YyH_wk3j2aINt-iq2D67O_OukTb56ft6pVs3l_Wq8cNsarhBJwH27YyQM0tC4wJIYMVHeXOBSkkDV0tfFeeyzZwCIIpxWsQjTWNccqzJapOszZNOScf9D7FwaRZA9V_THRhok9MdGHCfgF3H1VP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Molecular mechanism for preQ 1 -II riboswitch function revealed by molecular dynamics</title><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Aytenfisu, Asaminew H. ; Liberman, Joseph A. ; Wedekind, Joseph E. ; Mathews, David H.</creator><creatorcontrib>Aytenfisu, Asaminew H. ; Liberman, Joseph A. ; Wedekind, Joseph E. ; Mathews, David H.</creatorcontrib><description>Riboswitches are RNA molecules that regulate gene expression using conformational change, affected by binding of small molecule ligands. A crystal structure of a ligand-bound class II preQ
1
riboswitch has been determined in a previous structural study. To gain insight into the dynamics of this riboswitch in solution, eight total molecular dynamic simulations, four with and four without ligand, were performed using the Amber force field. In the presence of ligand, all four of the simulations demonstrated rearranged base pairs at the 3′ end, consistent with expected base-pairing from comparative sequence analysis in a prior bioinformatic analysis; this suggests the pairing in this region was altered by crystallization. Additionally, in the absence of ligand, three of the simulations demonstrated similar changes in base-pairing at the ligand binding site. Significantly, although most of the riboswitch architecture remained intact in the respective trajectories, the P3 stem was destabilized in the ligand-free simulations in a way that exposed the Shine–Dalgarno sequence. This work illustrates how destabilization of two major groove base triples can influence a nearby H-type pseudoknot and provides a mechanism for control of gene expression by a fold that is frequently found in bacterial riboswitches.</description><identifier>ISSN: 1355-8382</identifier><identifier>EISSN: 1469-9001</identifier><identifier>DOI: 10.1261/rna.051367.115</identifier><language>eng</language><ispartof>RNA (Cambridge), 2015-11, Vol.21 (11), p.1898-1907</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c845-1de1c997f125c3f33667fc6b05ddf7670fb26eb35579f51f638852164ca4ad8e3</citedby><cites>FETCH-LOGICAL-c845-1de1c997f125c3f33667fc6b05ddf7670fb26eb35579f51f638852164ca4ad8e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Aytenfisu, Asaminew H.</creatorcontrib><creatorcontrib>Liberman, Joseph A.</creatorcontrib><creatorcontrib>Wedekind, Joseph E.</creatorcontrib><creatorcontrib>Mathews, David H.</creatorcontrib><title>Molecular mechanism for preQ 1 -II riboswitch function revealed by molecular dynamics</title><title>RNA (Cambridge)</title><description>Riboswitches are RNA molecules that regulate gene expression using conformational change, affected by binding of small molecule ligands. A crystal structure of a ligand-bound class II preQ
1
riboswitch has been determined in a previous structural study. To gain insight into the dynamics of this riboswitch in solution, eight total molecular dynamic simulations, four with and four without ligand, were performed using the Amber force field. In the presence of ligand, all four of the simulations demonstrated rearranged base pairs at the 3′ end, consistent with expected base-pairing from comparative sequence analysis in a prior bioinformatic analysis; this suggests the pairing in this region was altered by crystallization. Additionally, in the absence of ligand, three of the simulations demonstrated similar changes in base-pairing at the ligand binding site. Significantly, although most of the riboswitch architecture remained intact in the respective trajectories, the P3 stem was destabilized in the ligand-free simulations in a way that exposed the Shine–Dalgarno sequence. This work illustrates how destabilization of two major groove base triples can influence a nearby H-type pseudoknot and provides a mechanism for control of gene expression by a fold that is frequently found in bacterial riboswitches.</description><issn>1355-8382</issn><issn>1469-9001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEcxIMoWKtXz_kCWfPfbB57lOKjUBGhnkM2DxrZR0laZb-9kRZPM8zAMPwQugdaQS3gIY2mohyYkBUAv0ALaERLWkrhsnjGOVFM1dfoJuevErJSL9Dn29R7e-xNwoO3OzPGPOAwJbxP_gMDJus1TrGb8k882B0Ox9Ee4jTi5L-96b3D3YyH_wk3j2aINt-iq2D67O_OukTb56ft6pVs3l_Wq8cNsarhBJwH27YyQM0tC4wJIYMVHeXOBSkkDV0tfFeeyzZwCIIpxWsQjTWNccqzJapOszZNOScf9D7FwaRZA9V_THRhok9MdGHCfgF3H1VP</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Aytenfisu, Asaminew H.</creator><creator>Liberman, Joseph A.</creator><creator>Wedekind, Joseph E.</creator><creator>Mathews, David H.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201511</creationdate><title>Molecular mechanism for preQ 1 -II riboswitch function revealed by molecular dynamics</title><author>Aytenfisu, Asaminew H. ; Liberman, Joseph A. ; Wedekind, Joseph E. ; Mathews, David H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c845-1de1c997f125c3f33667fc6b05ddf7670fb26eb35579f51f638852164ca4ad8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aytenfisu, Asaminew H.</creatorcontrib><creatorcontrib>Liberman, Joseph A.</creatorcontrib><creatorcontrib>Wedekind, Joseph E.</creatorcontrib><creatorcontrib>Mathews, David H.</creatorcontrib><collection>CrossRef</collection><jtitle>RNA (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aytenfisu, Asaminew H.</au><au>Liberman, Joseph A.</au><au>Wedekind, Joseph E.</au><au>Mathews, David H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular mechanism for preQ 1 -II riboswitch function revealed by molecular dynamics</atitle><jtitle>RNA (Cambridge)</jtitle><date>2015-11</date><risdate>2015</risdate><volume>21</volume><issue>11</issue><spage>1898</spage><epage>1907</epage><pages>1898-1907</pages><issn>1355-8382</issn><eissn>1469-9001</eissn><abstract>Riboswitches are RNA molecules that regulate gene expression using conformational change, affected by binding of small molecule ligands. A crystal structure of a ligand-bound class II preQ
1
riboswitch has been determined in a previous structural study. To gain insight into the dynamics of this riboswitch in solution, eight total molecular dynamic simulations, four with and four without ligand, were performed using the Amber force field. In the presence of ligand, all four of the simulations demonstrated rearranged base pairs at the 3′ end, consistent with expected base-pairing from comparative sequence analysis in a prior bioinformatic analysis; this suggests the pairing in this region was altered by crystallization. Additionally, in the absence of ligand, three of the simulations demonstrated similar changes in base-pairing at the ligand binding site. Significantly, although most of the riboswitch architecture remained intact in the respective trajectories, the P3 stem was destabilized in the ligand-free simulations in a way that exposed the Shine–Dalgarno sequence. This work illustrates how destabilization of two major groove base triples can influence a nearby H-type pseudoknot and provides a mechanism for control of gene expression by a fold that is frequently found in bacterial riboswitches.</abstract><doi>10.1261/rna.051367.115</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1355-8382 |
ispartof | RNA (Cambridge), 2015-11, Vol.21 (11), p.1898-1907 |
issn | 1355-8382 1469-9001 |
language | eng |
recordid | cdi_crossref_primary_10_1261_rna_051367_115 |
source | EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
title | Molecular mechanism for preQ 1 -II riboswitch function revealed by molecular dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A11%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20mechanism%20for%20preQ%201%20-II%20riboswitch%20function%20revealed%20by%20molecular%20dynamics&rft.jtitle=RNA%20(Cambridge)&rft.au=Aytenfisu,%20Asaminew%20H.&rft.date=2015-11&rft.volume=21&rft.issue=11&rft.spage=1898&rft.epage=1907&rft.pages=1898-1907&rft.issn=1355-8382&rft.eissn=1469-9001&rft_id=info:doi/10.1261/rna.051367.115&rft_dat=%3Ccrossref%3E10_1261_rna_051367_115%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |