Signing Out Confounding Shocks in Variance-Maximizing Identification Methods

Recent papers have examined the dominant drivers of business cycles using variance-maximizing techniques for identification. However, identification is poor when shocks other than the target of interest play large roles in driving volatility at the targeted frequency or horizon, leading them to capt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AEA papers and proceedings 2022-05, Vol.112, p.476-480
Hauptverfasser: Francis, Neville, Kindberg-Hanlon, Gene
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 480
container_issue
container_start_page 476
container_title AEA papers and proceedings
container_volume 112
creator Francis, Neville
Kindberg-Hanlon, Gene
description Recent papers have examined the dominant drivers of business cycles using variance-maximizing techniques for identification. However, identification is poor when shocks other than the target of interest play large roles in driving volatility at the targeted frequency or horizon, leading them to capture a "hybrid" shock. This paper suggests a simple fix that lowers biases in the impulse responses. The fix is to include theoretically informed sign and magnitude restrictions at the identification stage of the vector autoregression. Applying this to US data, we find an equal role for demand and supply shocks in generating business cycle fluctuations.
doi_str_mv 10.1257/pandp.20221046
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1257_pandp_20221046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27174441</jstor_id><sourcerecordid>27174441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1649-aa82cc53b9116026c96d6d34a8b10c77ba18b45c47d62288d03b0d9457c613283</originalsourceid><addsrcrecordid>eNpFkMtOwzAQRS0EElXplh1SfiBlxnZsZ4kiHpVSdVFgGzl20rpQu4pTCfh6WgJlNa9zZ3EIuUaYIs3k7U57u5tSoBSBizMyOix5ClKK81Mv1CWZxLgBAAosF4KOSLl0K-_8Klns-6QIvg17b4_zch3MW0ycT15157Q3TTrXH27rvo7XmW1871pndO-CT-ZNvw42XpGLVr_HZvJbx-Tl4f65eErLxeOsuCtTg4LnqdaKGpOxOkcUQIXJhRWWca1qBCNlrVHVPDNcWkGpUhZYDTbnmTQCGVVsTKbDX9OFGLumrXad2-rus0KojjqqHx3Vn45DIBkCjQnexX9cgUSKWc4OyM2AbGIfuhNBJUrOObJvIQFnBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Signing Out Confounding Shocks in Variance-Maximizing Identification Methods</title><source>American Economic Association Web</source><source>EBSCOhost Business Source Complete</source><creator>Francis, Neville ; Kindberg-Hanlon, Gene</creator><creatorcontrib>Francis, Neville ; Kindberg-Hanlon, Gene</creatorcontrib><description>Recent papers have examined the dominant drivers of business cycles using variance-maximizing techniques for identification. However, identification is poor when shocks other than the target of interest play large roles in driving volatility at the targeted frequency or horizon, leading them to capture a "hybrid" shock. This paper suggests a simple fix that lowers biases in the impulse responses. The fix is to include theoretically informed sign and magnitude restrictions at the identification stage of the vector autoregression. Applying this to US data, we find an equal role for demand and supply shocks in generating business cycle fluctuations.</description><identifier>ISSN: 2574-0768</identifier><identifier>EISSN: 2574-0776</identifier><identifier>DOI: 10.1257/pandp.20221046</identifier><language>eng</language><publisher>American Economic Association</publisher><subject>1953– 2018 ; ESTIMATION OF DYNAMIC CAUSAL EFFECTS IN MACRO: PROMISES AND PITFALLS ; Konjunkturforschung ; Neoklassische Synthese ; Schock ; USA ; VAR-Modell ; Varianzanalyse ; Volatilität</subject><ispartof>AEA papers and proceedings, 2022-05, Vol.112, p.476-480</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1649-aa82cc53b9116026c96d6d34a8b10c77ba18b45c47d62288d03b0d9457c613283</citedby><cites>FETCH-LOGICAL-c1649-aa82cc53b9116026c96d6d34a8b10c77ba18b45c47d62288d03b0d9457c613283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3735,27901,27902</link.rule.ids></links><search><creatorcontrib>Francis, Neville</creatorcontrib><creatorcontrib>Kindberg-Hanlon, Gene</creatorcontrib><title>Signing Out Confounding Shocks in Variance-Maximizing Identification Methods</title><title>AEA papers and proceedings</title><description>Recent papers have examined the dominant drivers of business cycles using variance-maximizing techniques for identification. However, identification is poor when shocks other than the target of interest play large roles in driving volatility at the targeted frequency or horizon, leading them to capture a "hybrid" shock. This paper suggests a simple fix that lowers biases in the impulse responses. The fix is to include theoretically informed sign and magnitude restrictions at the identification stage of the vector autoregression. Applying this to US data, we find an equal role for demand and supply shocks in generating business cycle fluctuations.</description><subject>1953– 2018</subject><subject>ESTIMATION OF DYNAMIC CAUSAL EFFECTS IN MACRO: PROMISES AND PITFALLS</subject><subject>Konjunkturforschung</subject><subject>Neoklassische Synthese</subject><subject>Schock</subject><subject>USA</subject><subject>VAR-Modell</subject><subject>Varianzanalyse</subject><subject>Volatilität</subject><issn>2574-0768</issn><issn>2574-0776</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFkMtOwzAQRS0EElXplh1SfiBlxnZsZ4kiHpVSdVFgGzl20rpQu4pTCfh6WgJlNa9zZ3EIuUaYIs3k7U57u5tSoBSBizMyOix5ClKK81Mv1CWZxLgBAAosF4KOSLl0K-_8Klns-6QIvg17b4_zch3MW0ycT15157Q3TTrXH27rvo7XmW1871pndO-CT-ZNvw42XpGLVr_HZvJbx-Tl4f65eErLxeOsuCtTg4LnqdaKGpOxOkcUQIXJhRWWca1qBCNlrVHVPDNcWkGpUhZYDTbnmTQCGVVsTKbDX9OFGLumrXad2-rus0KojjqqHx3Vn45DIBkCjQnexX9cgUSKWc4OyM2AbGIfuhNBJUrOObJvIQFnBQ</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Francis, Neville</creator><creator>Kindberg-Hanlon, Gene</creator><general>American Economic Association</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220501</creationdate><title>Signing Out Confounding Shocks in Variance-Maximizing Identification Methods</title><author>Francis, Neville ; Kindberg-Hanlon, Gene</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1649-aa82cc53b9116026c96d6d34a8b10c77ba18b45c47d62288d03b0d9457c613283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>1953– 2018</topic><topic>ESTIMATION OF DYNAMIC CAUSAL EFFECTS IN MACRO: PROMISES AND PITFALLS</topic><topic>Konjunkturforschung</topic><topic>Neoklassische Synthese</topic><topic>Schock</topic><topic>USA</topic><topic>VAR-Modell</topic><topic>Varianzanalyse</topic><topic>Volatilität</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Francis, Neville</creatorcontrib><creatorcontrib>Kindberg-Hanlon, Gene</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><jtitle>AEA papers and proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Francis, Neville</au><au>Kindberg-Hanlon, Gene</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Signing Out Confounding Shocks in Variance-Maximizing Identification Methods</atitle><jtitle>AEA papers and proceedings</jtitle><date>2022-05-01</date><risdate>2022</risdate><volume>112</volume><spage>476</spage><epage>480</epage><pages>476-480</pages><issn>2574-0768</issn><eissn>2574-0776</eissn><abstract>Recent papers have examined the dominant drivers of business cycles using variance-maximizing techniques for identification. However, identification is poor when shocks other than the target of interest play large roles in driving volatility at the targeted frequency or horizon, leading them to capture a "hybrid" shock. This paper suggests a simple fix that lowers biases in the impulse responses. The fix is to include theoretically informed sign and magnitude restrictions at the identification stage of the vector autoregression. Applying this to US data, we find an equal role for demand and supply shocks in generating business cycle fluctuations.</abstract><pub>American Economic Association</pub><doi>10.1257/pandp.20221046</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2574-0768
ispartof AEA papers and proceedings, 2022-05, Vol.112, p.476-480
issn 2574-0768
2574-0776
language eng
recordid cdi_crossref_primary_10_1257_pandp_20221046
source American Economic Association Web; EBSCOhost Business Source Complete
subjects 1953– 2018
ESTIMATION OF DYNAMIC CAUSAL EFFECTS IN MACRO: PROMISES AND PITFALLS
Konjunkturforschung
Neoklassische Synthese
Schock
USA
VAR-Modell
Varianzanalyse
Volatilität
title Signing Out Confounding Shocks in Variance-Maximizing Identification Methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A43%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Signing%20Out%20Confounding%20Shocks%20in%20Variance-Maximizing%20Identification%20Methods&rft.jtitle=AEA%20papers%20and%20proceedings&rft.au=Francis,%20Neville&rft.date=2022-05-01&rft.volume=112&rft.spage=476&rft.epage=480&rft.pages=476-480&rft.issn=2574-0768&rft.eissn=2574-0776&rft_id=info:doi/10.1257/pandp.20221046&rft_dat=%3Cjstor_cross%3E27174441%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=27174441&rfr_iscdi=true