Weighted utility and optimism/pessimism: a decision-theoretic foundation of various stochastic dominance orders
We show that a probability distribution likelihood ratio dominates another distribution if and only if, for every weighted utility function, the former is preferred over the latter. Likewise, a probability distribution hazard rate (or reverse hazard rate) dominates another distribution if and only i...
Gespeichert in:
Veröffentlicht in: | American economic journal. Microeconomics 2024-02, Vol.16 (1), p.210-223 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 223 |
---|---|
container_issue | 1 |
container_start_page | 210 |
container_title | American economic journal. Microeconomics |
container_volume | 16 |
creator | Wang, Tao |
description | We show that a probability distribution likelihood ratio dominates another distribution if and only if, for every weighted utility function, the former is preferred over the latter. Likewise, a probability distribution hazard rate (or reverse hazard rate) dominates another distribution if and only if, the former is preferred by every optimistic (or pessimistic) decision maker. (JEL D11, D83) |
doi_str_mv | 10.1257/mic.20220350 |
format | Article |
fullrecord | <record><control><sourceid>econis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1257_mic_20220350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1882583310</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-f4a12a70f3f8a39f02655128a24afd9693e7db46ad9c69e62825dbc9ee2c11433</originalsourceid><addsrcrecordid>eNpFj7tOAzEURC0EEiHQ8QHb0bCJfa_ttUsUQYgUKQ2I0nL8AKNsdrU2Rf6ehfCoZoozIx1CrhmdMRDNvE1uBhSAoqAnZMI0F3UjlTj961Kfk4uc3ymVKFFNyM1LSK9vJfjqo6RdKofK7n3V9SW1KbfzPuT83S7JWbS7HK5-ckqeH-6fFo_1erNcLe7WtQMFpY7cMrANjRiVRR0pSCEYKAvcRq-lxtD4LZfWayd1kONI-K3TIYBjjCNOye3x1w1dzkOIph9Sa4eDYdR8SZpR0vxKjnh1xIPr9in_w2o8VoiM4ic6Kk7o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Weighted utility and optimism/pessimism: a decision-theoretic foundation of various stochastic dominance orders</title><source>American Economic Association</source><creator>Wang, Tao</creator><creatorcontrib>Wang, Tao</creatorcontrib><description>We show that a probability distribution likelihood ratio dominates another distribution if and only if, for every weighted utility function, the former is preferred over the latter. Likewise, a probability distribution hazard rate (or reverse hazard rate) dominates another distribution if and only if, the former is preferred by every optimistic (or pessimistic) decision maker. (JEL D11, D83)</description><identifier>ISSN: 1945-7669</identifier><identifier>EISSN: 1945-7685</identifier><identifier>DOI: 10.1257/mic.20220350</identifier><language>eng</language><ispartof>American economic journal. Microeconomics, 2024-02, Vol.16 (1), p.210-223</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c282t-f4a12a70f3f8a39f02655128a24afd9693e7db46ad9c69e62825dbc9ee2c11433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3748,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Tao</creatorcontrib><title>Weighted utility and optimism/pessimism: a decision-theoretic foundation of various stochastic dominance orders</title><title>American economic journal. Microeconomics</title><description>We show that a probability distribution likelihood ratio dominates another distribution if and only if, for every weighted utility function, the former is preferred over the latter. Likewise, a probability distribution hazard rate (or reverse hazard rate) dominates another distribution if and only if, the former is preferred by every optimistic (or pessimistic) decision maker. (JEL D11, D83)</description><issn>1945-7669</issn><issn>1945-7685</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFj7tOAzEURC0EEiHQ8QHb0bCJfa_ttUsUQYgUKQ2I0nL8AKNsdrU2Rf6ehfCoZoozIx1CrhmdMRDNvE1uBhSAoqAnZMI0F3UjlTj961Kfk4uc3ymVKFFNyM1LSK9vJfjqo6RdKofK7n3V9SW1KbfzPuT83S7JWbS7HK5-ckqeH-6fFo_1erNcLe7WtQMFpY7cMrANjRiVRR0pSCEYKAvcRq-lxtD4LZfWayd1kONI-K3TIYBjjCNOye3x1w1dzkOIph9Sa4eDYdR8SZpR0vxKjnh1xIPr9in_w2o8VoiM4ic6Kk7o</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Wang, Tao</creator><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240201</creationdate><title>Weighted utility and optimism/pessimism</title><author>Wang, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-f4a12a70f3f8a39f02655128a24afd9693e7db46ad9c69e62825dbc9ee2c11433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Tao</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><jtitle>American economic journal. Microeconomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weighted utility and optimism/pessimism: a decision-theoretic foundation of various stochastic dominance orders</atitle><jtitle>American economic journal. Microeconomics</jtitle><date>2024-02-01</date><risdate>2024</risdate><volume>16</volume><issue>1</issue><spage>210</spage><epage>223</epage><pages>210-223</pages><issn>1945-7669</issn><eissn>1945-7685</eissn><abstract>We show that a probability distribution likelihood ratio dominates another distribution if and only if, for every weighted utility function, the former is preferred over the latter. Likewise, a probability distribution hazard rate (or reverse hazard rate) dominates another distribution if and only if, the former is preferred by every optimistic (or pessimistic) decision maker. (JEL D11, D83)</abstract><doi>10.1257/mic.20220350</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1945-7669 |
ispartof | American economic journal. Microeconomics, 2024-02, Vol.16 (1), p.210-223 |
issn | 1945-7669 1945-7685 |
language | eng |
recordid | cdi_crossref_primary_10_1257_mic_20220350 |
source | American Economic Association |
title | Weighted utility and optimism/pessimism: a decision-theoretic foundation of various stochastic dominance orders |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A52%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-econis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weighted%20utility%20and%20optimism/pessimism:%20a%20decision-theoretic%20foundation%20of%20various%20stochastic%20dominance%20orders&rft.jtitle=American%20economic%20journal.%20Microeconomics&rft.au=Wang,%20Tao&rft.date=2024-02-01&rft.volume=16&rft.issue=1&rft.spage=210&rft.epage=223&rft.pages=210-223&rft.issn=1945-7669&rft.eissn=1945-7685&rft_id=info:doi/10.1257/mic.20220350&rft_dat=%3Ceconis_cross%3E1882583310%3C/econis_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |