On sarcomere length stability during isometric and post-active-stretch isometric contractions
Sarcomere length (SL) instability and SL non-uniformity have been used to explain fundamental properties of skeletal muscles, such as creep, force depression following active muscle shortening, and residual force enhancement following active stretching of muscles. Regarding residual force enhancemen...
Gespeichert in:
Veröffentlicht in: | Journal of experimental biology 2019-01 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Sarcomere length (SL) instability and SL non-uniformity have been used to explain fundamental properties of skeletal muscles, such as creep, force depression following active muscle shortening, and residual force enhancement following active stretching of muscles. Regarding residual force enhancement, it has been argued that active muscle stretching causes SL instability, thereby increasing SL non-uniformity. However, we recently showed that SL non-uniformity is not increased by active muscle stretching, but it remains unclear if SL stability is affected by active stretching. Here, we used single myofibrils of rabbit psoas and measured SL non-uniformity and SL instability during isometric contractions and for isometric contractions following active stretching at average SLs corresponding to the descending limb of the force-length relationship. We defined isometric contractions as contractions during which mean SL remained constant. SL instability was quantified by the rate of change of individual SLs over the course of steady state, isometric force; and SL non-uniformity was defined as deviations of SLs from the mean SL at an instant of time. We found that while the mean SL remained constant during isometric contraction, by definition, individual SLs did not. SLs were more stable in the force-enhanced, isometric state following active stretching compared to the isometric reference state. We also found that SL instability was not correlated with the rate of change of SL non-uniformity. Also, SL non-uniformity was not different in the isometric and the post-stretch isometric contractions. We conclude that since SL is more stable but similarly non-uniform in the force-enhanced compared to the corresponding isometric reference contraction, it appears unlikely that either SL instability or SL non-uniformity contribute to the residual force enhancement property of skeletal muscle. |
---|---|
ISSN: | 0022-0949 1477-9145 |
DOI: | 10.1242/jeb.209924 |