ON A PERTURBATION THEORY AND ON STRONG CONVERGENCE RATES FOR STOCHASTIC ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS WITH NONGLOBALLY MONOTONE COEFFICIENTS

We develop a perturbation theory for stochastic differential equations (SDEs) by which we mean both stochastic ordinary differential equations (SODEs) and stochastic partial differential equations (SPDEs). In particular, we estimate the Lp -distance between the solution process of an SDE and an arbi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of probability 2020-01, Vol.48 (1), p.53-93
Hauptverfasser: Hutzenthaler, Martin, Jentzen, Arnulf
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 93
container_issue 1
container_start_page 53
container_title The Annals of probability
container_volume 48
creator Hutzenthaler, Martin
Jentzen, Arnulf
description We develop a perturbation theory for stochastic differential equations (SDEs) by which we mean both stochastic ordinary differential equations (SODEs) and stochastic partial differential equations (SPDEs). In particular, we estimate the Lp -distance between the solution process of an SDE and an arbitrary Itô process, which we view as a perturbation of the solution process of the SDE, by the Lq -distances of the differences of the local characteristics for suitable p, q > 0. As one application of the developed perturbation theory, we establish strong convergence rates for numerical approximations of a class of SODEs with nonglobally monotone coefficients. As another application of the developed perturbation theory, we prove strong convergence rates for spatial spectral Galerkin approximations of solutions of semilinear SPDEs with nonglobally monotone nonlinearities including Cahn–Hilliard–Cook-type equations and stochastic Burgers equations. Further applications of the developed perturbation theory include regularity analyses of solutions of SDEs with respect to their initial values as well as small-noise analyses for ordinary and partial differential equations.
doi_str_mv 10.1214/19-AOP1345
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1214_19_AOP1345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26922909</jstor_id><sourcerecordid>26922909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-9512b085703e3e4f5a3f2eca2ba09b3f2f6365e8d6b1fd077fb4159273c4d78b3</originalsourceid><addsrcrecordid>eNo9UE1LwzAYDqLgnF68CzkL1Xy0TXPMunQN1GSmmbpTabsWHMqk3cW_4q81bsPT-z48X_AAcIvRAyY4fMQ8EGaJaRidgQnBcRIkPHw7BxOEOA4w48kluBrHLUIoZiycgB-joYBLad3KzoRTHrpcGruGQs-hR6WzRi9gavSLtAupUwmtcLKEmbGeNGkuSqdSaOxcaXHyLYV1ShRwrrJMWqkPQD6vDgUlfFUuh9rHFmYmimINn4w2zmjpa2SWqVR5S3kNLvr6Y-xuTncKVpl0aR4UZqFSUQQtSfg-4BEmDUoihmhHu7CPatqTrq1JUyPe-L-PaRx1ySZucL9BjPVNiCNOGG3DDUsaOgX3x9x22I3j0PXV1_D-WQ_fFUbV36oV5tVpVS--O4q34343_CtJzAnhiNNfA6xoUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ON A PERTURBATION THEORY AND ON STRONG CONVERGENCE RATES FOR STOCHASTIC ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS WITH NONGLOBALLY MONOTONE COEFFICIENTS</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>Project Euclid Complete</source><creator>Hutzenthaler, Martin ; Jentzen, Arnulf</creator><creatorcontrib>Hutzenthaler, Martin ; Jentzen, Arnulf</creatorcontrib><description>We develop a perturbation theory for stochastic differential equations (SDEs) by which we mean both stochastic ordinary differential equations (SODEs) and stochastic partial differential equations (SPDEs). In particular, we estimate the Lp -distance between the solution process of an SDE and an arbitrary Itô process, which we view as a perturbation of the solution process of the SDE, by the Lq -distances of the differences of the local characteristics for suitable p, q &gt; 0. As one application of the developed perturbation theory, we establish strong convergence rates for numerical approximations of a class of SODEs with nonglobally monotone coefficients. As another application of the developed perturbation theory, we prove strong convergence rates for spatial spectral Galerkin approximations of solutions of semilinear SPDEs with nonglobally monotone nonlinearities including Cahn–Hilliard–Cook-type equations and stochastic Burgers equations. Further applications of the developed perturbation theory include regularity analyses of solutions of SDEs with respect to their initial values as well as small-noise analyses for ordinary and partial differential equations.</description><identifier>ISSN: 0091-1798</identifier><identifier>EISSN: 2168-894X</identifier><identifier>DOI: 10.1214/19-AOP1345</identifier><language>eng</language><publisher>Institute of Mathematical Statistics</publisher><ispartof>The Annals of probability, 2020-01, Vol.48 (1), p.53-93</ispartof><rights>Institute of Mathematical Statistics, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-9512b085703e3e4f5a3f2eca2ba09b3f2f6365e8d6b1fd077fb4159273c4d78b3</citedby><cites>FETCH-LOGICAL-c289t-9512b085703e3e4f5a3f2eca2ba09b3f2f6365e8d6b1fd077fb4159273c4d78b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26922909$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26922909$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27915,27916,58008,58012,58241,58245</link.rule.ids></links><search><creatorcontrib>Hutzenthaler, Martin</creatorcontrib><creatorcontrib>Jentzen, Arnulf</creatorcontrib><title>ON A PERTURBATION THEORY AND ON STRONG CONVERGENCE RATES FOR STOCHASTIC ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS WITH NONGLOBALLY MONOTONE COEFFICIENTS</title><title>The Annals of probability</title><description>We develop a perturbation theory for stochastic differential equations (SDEs) by which we mean both stochastic ordinary differential equations (SODEs) and stochastic partial differential equations (SPDEs). In particular, we estimate the Lp -distance between the solution process of an SDE and an arbitrary Itô process, which we view as a perturbation of the solution process of the SDE, by the Lq -distances of the differences of the local characteristics for suitable p, q &gt; 0. As one application of the developed perturbation theory, we establish strong convergence rates for numerical approximations of a class of SODEs with nonglobally monotone coefficients. As another application of the developed perturbation theory, we prove strong convergence rates for spatial spectral Galerkin approximations of solutions of semilinear SPDEs with nonglobally monotone nonlinearities including Cahn–Hilliard–Cook-type equations and stochastic Burgers equations. Further applications of the developed perturbation theory include regularity analyses of solutions of SDEs with respect to their initial values as well as small-noise analyses for ordinary and partial differential equations.</description><issn>0091-1798</issn><issn>2168-894X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9UE1LwzAYDqLgnF68CzkL1Xy0TXPMunQN1GSmmbpTabsWHMqk3cW_4q81bsPT-z48X_AAcIvRAyY4fMQ8EGaJaRidgQnBcRIkPHw7BxOEOA4w48kluBrHLUIoZiycgB-joYBLad3KzoRTHrpcGruGQs-hR6WzRi9gavSLtAupUwmtcLKEmbGeNGkuSqdSaOxcaXHyLYV1ShRwrrJMWqkPQD6vDgUlfFUuh9rHFmYmimINn4w2zmjpa2SWqVR5S3kNLvr6Y-xuTncKVpl0aR4UZqFSUQQtSfg-4BEmDUoihmhHu7CPatqTrq1JUyPe-L-PaRx1ySZucL9BjPVNiCNOGG3DDUsaOgX3x9x22I3j0PXV1_D-WQ_fFUbV36oV5tVpVS--O4q34343_CtJzAnhiNNfA6xoUQ</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Hutzenthaler, Martin</creator><creator>Jentzen, Arnulf</creator><general>Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200101</creationdate><title>ON A PERTURBATION THEORY AND ON STRONG CONVERGENCE RATES FOR STOCHASTIC ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS WITH NONGLOBALLY MONOTONE COEFFICIENTS</title><author>Hutzenthaler, Martin ; Jentzen, Arnulf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-9512b085703e3e4f5a3f2eca2ba09b3f2f6365e8d6b1fd077fb4159273c4d78b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hutzenthaler, Martin</creatorcontrib><creatorcontrib>Jentzen, Arnulf</creatorcontrib><collection>CrossRef</collection><jtitle>The Annals of probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hutzenthaler, Martin</au><au>Jentzen, Arnulf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ON A PERTURBATION THEORY AND ON STRONG CONVERGENCE RATES FOR STOCHASTIC ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS WITH NONGLOBALLY MONOTONE COEFFICIENTS</atitle><jtitle>The Annals of probability</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>48</volume><issue>1</issue><spage>53</spage><epage>93</epage><pages>53-93</pages><issn>0091-1798</issn><eissn>2168-894X</eissn><abstract>We develop a perturbation theory for stochastic differential equations (SDEs) by which we mean both stochastic ordinary differential equations (SODEs) and stochastic partial differential equations (SPDEs). In particular, we estimate the Lp -distance between the solution process of an SDE and an arbitrary Itô process, which we view as a perturbation of the solution process of the SDE, by the Lq -distances of the differences of the local characteristics for suitable p, q &gt; 0. As one application of the developed perturbation theory, we establish strong convergence rates for numerical approximations of a class of SODEs with nonglobally monotone coefficients. As another application of the developed perturbation theory, we prove strong convergence rates for spatial spectral Galerkin approximations of solutions of semilinear SPDEs with nonglobally monotone nonlinearities including Cahn–Hilliard–Cook-type equations and stochastic Burgers equations. Further applications of the developed perturbation theory include regularity analyses of solutions of SDEs with respect to their initial values as well as small-noise analyses for ordinary and partial differential equations.</abstract><pub>Institute of Mathematical Statistics</pub><doi>10.1214/19-AOP1345</doi><tpages>41</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0091-1798
ispartof The Annals of probability, 2020-01, Vol.48 (1), p.53-93
issn 0091-1798
2168-894X
language eng
recordid cdi_crossref_primary_10_1214_19_AOP1345
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics; Jstor Complete Legacy; Project Euclid Complete
title ON A PERTURBATION THEORY AND ON STRONG CONVERGENCE RATES FOR STOCHASTIC ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS WITH NONGLOBALLY MONOTONE COEFFICIENTS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T03%3A43%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ON%20A%20PERTURBATION%20THEORY%20AND%20ON%20STRONG%20CONVERGENCE%20RATES%20FOR%20STOCHASTIC%20ORDINARY%20AND%20PARTIAL%20DIFFERENTIAL%20EQUATIONS%20WITH%20NONGLOBALLY%20MONOTONE%20COEFFICIENTS&rft.jtitle=The%20Annals%20of%20probability&rft.au=Hutzenthaler,%20Martin&rft.date=2020-01-01&rft.volume=48&rft.issue=1&rft.spage=53&rft.epage=93&rft.pages=53-93&rft.issn=0091-1798&rft.eissn=2168-894X&rft_id=info:doi/10.1214/19-AOP1345&rft_dat=%3Cjstor_cross%3E26922909%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=26922909&rfr_iscdi=true