ON A PERTURBATION THEORY AND ON STRONG CONVERGENCE RATES FOR STOCHASTIC ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS WITH NONGLOBALLY MONOTONE COEFFICIENTS
We develop a perturbation theory for stochastic differential equations (SDEs) by which we mean both stochastic ordinary differential equations (SODEs) and stochastic partial differential equations (SPDEs). In particular, we estimate the Lp -distance between the solution process of an SDE and an arbi...
Gespeichert in:
Veröffentlicht in: | The Annals of probability 2020-01, Vol.48 (1), p.53-93 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 93 |
---|---|
container_issue | 1 |
container_start_page | 53 |
container_title | The Annals of probability |
container_volume | 48 |
creator | Hutzenthaler, Martin Jentzen, Arnulf |
description | We develop a perturbation theory for stochastic differential equations (SDEs) by which we mean both stochastic ordinary differential equations (SODEs) and stochastic partial differential equations (SPDEs). In particular, we estimate the Lp
-distance between the solution process of an SDE and an arbitrary Itô process, which we view as a perturbation of the solution process of the SDE, by the Lq
-distances of the differences of the local characteristics for suitable p, q > 0. As one application of the developed perturbation theory, we establish strong convergence rates for numerical approximations of a class of SODEs with nonglobally monotone coefficients. As another application of the developed perturbation theory, we prove strong convergence rates for spatial spectral Galerkin approximations of solutions of semilinear SPDEs with nonglobally monotone nonlinearities including Cahn–Hilliard–Cook-type equations and stochastic Burgers equations. Further applications of the developed perturbation theory include regularity analyses of solutions of SDEs with respect to their initial values as well as small-noise analyses for ordinary and partial differential equations. |
doi_str_mv | 10.1214/19-AOP1345 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1214_19_AOP1345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26922909</jstor_id><sourcerecordid>26922909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-9512b085703e3e4f5a3f2eca2ba09b3f2f6365e8d6b1fd077fb4159273c4d78b3</originalsourceid><addsrcrecordid>eNo9UE1LwzAYDqLgnF68CzkL1Xy0TXPMunQN1GSmmbpTabsWHMqk3cW_4q81bsPT-z48X_AAcIvRAyY4fMQ8EGaJaRidgQnBcRIkPHw7BxOEOA4w48kluBrHLUIoZiycgB-joYBLad3KzoRTHrpcGruGQs-hR6WzRi9gavSLtAupUwmtcLKEmbGeNGkuSqdSaOxcaXHyLYV1ShRwrrJMWqkPQD6vDgUlfFUuh9rHFmYmimINn4w2zmjpa2SWqVR5S3kNLvr6Y-xuTncKVpl0aR4UZqFSUQQtSfg-4BEmDUoihmhHu7CPatqTrq1JUyPe-L-PaRx1ySZucL9BjPVNiCNOGG3DDUsaOgX3x9x22I3j0PXV1_D-WQ_fFUbV36oV5tVpVS--O4q34343_CtJzAnhiNNfA6xoUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ON A PERTURBATION THEORY AND ON STRONG CONVERGENCE RATES FOR STOCHASTIC ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS WITH NONGLOBALLY MONOTONE COEFFICIENTS</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><source>Project Euclid Complete</source><creator>Hutzenthaler, Martin ; Jentzen, Arnulf</creator><creatorcontrib>Hutzenthaler, Martin ; Jentzen, Arnulf</creatorcontrib><description>We develop a perturbation theory for stochastic differential equations (SDEs) by which we mean both stochastic ordinary differential equations (SODEs) and stochastic partial differential equations (SPDEs). In particular, we estimate the Lp
-distance between the solution process of an SDE and an arbitrary Itô process, which we view as a perturbation of the solution process of the SDE, by the Lq
-distances of the differences of the local characteristics for suitable p, q > 0. As one application of the developed perturbation theory, we establish strong convergence rates for numerical approximations of a class of SODEs with nonglobally monotone coefficients. As another application of the developed perturbation theory, we prove strong convergence rates for spatial spectral Galerkin approximations of solutions of semilinear SPDEs with nonglobally monotone nonlinearities including Cahn–Hilliard–Cook-type equations and stochastic Burgers equations. Further applications of the developed perturbation theory include regularity analyses of solutions of SDEs with respect to their initial values as well as small-noise analyses for ordinary and partial differential equations.</description><identifier>ISSN: 0091-1798</identifier><identifier>EISSN: 2168-894X</identifier><identifier>DOI: 10.1214/19-AOP1345</identifier><language>eng</language><publisher>Institute of Mathematical Statistics</publisher><ispartof>The Annals of probability, 2020-01, Vol.48 (1), p.53-93</ispartof><rights>Institute of Mathematical Statistics, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-9512b085703e3e4f5a3f2eca2ba09b3f2f6365e8d6b1fd077fb4159273c4d78b3</citedby><cites>FETCH-LOGICAL-c289t-9512b085703e3e4f5a3f2eca2ba09b3f2f6365e8d6b1fd077fb4159273c4d78b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26922909$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26922909$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27915,27916,58008,58012,58241,58245</link.rule.ids></links><search><creatorcontrib>Hutzenthaler, Martin</creatorcontrib><creatorcontrib>Jentzen, Arnulf</creatorcontrib><title>ON A PERTURBATION THEORY AND ON STRONG CONVERGENCE RATES FOR STOCHASTIC ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS WITH NONGLOBALLY MONOTONE COEFFICIENTS</title><title>The Annals of probability</title><description>We develop a perturbation theory for stochastic differential equations (SDEs) by which we mean both stochastic ordinary differential equations (SODEs) and stochastic partial differential equations (SPDEs). In particular, we estimate the Lp
-distance between the solution process of an SDE and an arbitrary Itô process, which we view as a perturbation of the solution process of the SDE, by the Lq
-distances of the differences of the local characteristics for suitable p, q > 0. As one application of the developed perturbation theory, we establish strong convergence rates for numerical approximations of a class of SODEs with nonglobally monotone coefficients. As another application of the developed perturbation theory, we prove strong convergence rates for spatial spectral Galerkin approximations of solutions of semilinear SPDEs with nonglobally monotone nonlinearities including Cahn–Hilliard–Cook-type equations and stochastic Burgers equations. Further applications of the developed perturbation theory include regularity analyses of solutions of SDEs with respect to their initial values as well as small-noise analyses for ordinary and partial differential equations.</description><issn>0091-1798</issn><issn>2168-894X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9UE1LwzAYDqLgnF68CzkL1Xy0TXPMunQN1GSmmbpTabsWHMqk3cW_4q81bsPT-z48X_AAcIvRAyY4fMQ8EGaJaRidgQnBcRIkPHw7BxOEOA4w48kluBrHLUIoZiycgB-joYBLad3KzoRTHrpcGruGQs-hR6WzRi9gavSLtAupUwmtcLKEmbGeNGkuSqdSaOxcaXHyLYV1ShRwrrJMWqkPQD6vDgUlfFUuh9rHFmYmimINn4w2zmjpa2SWqVR5S3kNLvr6Y-xuTncKVpl0aR4UZqFSUQQtSfg-4BEmDUoihmhHu7CPatqTrq1JUyPe-L-PaRx1ySZucL9BjPVNiCNOGG3DDUsaOgX3x9x22I3j0PXV1_D-WQ_fFUbV36oV5tVpVS--O4q34343_CtJzAnhiNNfA6xoUQ</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Hutzenthaler, Martin</creator><creator>Jentzen, Arnulf</creator><general>Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200101</creationdate><title>ON A PERTURBATION THEORY AND ON STRONG CONVERGENCE RATES FOR STOCHASTIC ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS WITH NONGLOBALLY MONOTONE COEFFICIENTS</title><author>Hutzenthaler, Martin ; Jentzen, Arnulf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-9512b085703e3e4f5a3f2eca2ba09b3f2f6365e8d6b1fd077fb4159273c4d78b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hutzenthaler, Martin</creatorcontrib><creatorcontrib>Jentzen, Arnulf</creatorcontrib><collection>CrossRef</collection><jtitle>The Annals of probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hutzenthaler, Martin</au><au>Jentzen, Arnulf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ON A PERTURBATION THEORY AND ON STRONG CONVERGENCE RATES FOR STOCHASTIC ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS WITH NONGLOBALLY MONOTONE COEFFICIENTS</atitle><jtitle>The Annals of probability</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>48</volume><issue>1</issue><spage>53</spage><epage>93</epage><pages>53-93</pages><issn>0091-1798</issn><eissn>2168-894X</eissn><abstract>We develop a perturbation theory for stochastic differential equations (SDEs) by which we mean both stochastic ordinary differential equations (SODEs) and stochastic partial differential equations (SPDEs). In particular, we estimate the Lp
-distance between the solution process of an SDE and an arbitrary Itô process, which we view as a perturbation of the solution process of the SDE, by the Lq
-distances of the differences of the local characteristics for suitable p, q > 0. As one application of the developed perturbation theory, we establish strong convergence rates for numerical approximations of a class of SODEs with nonglobally monotone coefficients. As another application of the developed perturbation theory, we prove strong convergence rates for spatial spectral Galerkin approximations of solutions of semilinear SPDEs with nonglobally monotone nonlinearities including Cahn–Hilliard–Cook-type equations and stochastic Burgers equations. Further applications of the developed perturbation theory include regularity analyses of solutions of SDEs with respect to their initial values as well as small-noise analyses for ordinary and partial differential equations.</abstract><pub>Institute of Mathematical Statistics</pub><doi>10.1214/19-AOP1345</doi><tpages>41</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0091-1798 |
ispartof | The Annals of probability, 2020-01, Vol.48 (1), p.53-93 |
issn | 0091-1798 2168-894X |
language | eng |
recordid | cdi_crossref_primary_10_1214_19_AOP1345 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics; Jstor Complete Legacy; Project Euclid Complete |
title | ON A PERTURBATION THEORY AND ON STRONG CONVERGENCE RATES FOR STOCHASTIC ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS WITH NONGLOBALLY MONOTONE COEFFICIENTS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T03%3A43%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ON%20A%20PERTURBATION%20THEORY%20AND%20ON%20STRONG%20CONVERGENCE%20RATES%20FOR%20STOCHASTIC%20ORDINARY%20AND%20PARTIAL%20DIFFERENTIAL%20EQUATIONS%20WITH%20NONGLOBALLY%20MONOTONE%20COEFFICIENTS&rft.jtitle=The%20Annals%20of%20probability&rft.au=Hutzenthaler,%20Martin&rft.date=2020-01-01&rft.volume=48&rft.issue=1&rft.spage=53&rft.epage=93&rft.pages=53-93&rft.issn=0091-1798&rft.eissn=2168-894X&rft_id=info:doi/10.1214/19-AOP1345&rft_dat=%3Cjstor_cross%3E26922909%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=26922909&rfr_iscdi=true |